
{EssentialSet}

{ }Easily browse
this EssentialSet

using buttons
or bookmarks.

Evolving Critical Systems

Edited by Mike Hinchey, Lorcan Coyle,
Bashar Nuseibeh, and José Luis Fiadeiro

Essential Articles on Software Engineering

{EssentialSet}

EssentialSet | Evolving Critical Systems

Copyright and Reprint Permissions: Educational or personal use of this material is permitted
without fee provided such copies 1) are not made for profit or in lieu of purchasing copies for
classes, and that this notice and a full citation to the original work appear on the first page
of the copy and 2) do not imply IEEE endorsement of any third-party products or services.
Permission to reprint/republish this material for commercial, advertising or promotional pur-
poses or for creating new collective works for resale or redistribution must be obtained from
IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscataway,
NJ 08854-4141 or pubs-permissions@ieee.org.

IEEE MAKES THIS DOCUMENT AVAILABLE ON AN “AS IS” BASIS AND MAKES NO WAR-
RANTY, EXPRESS OR IMPLIED, AS TO THE ACCURACY, CAPABILITY, EFFICIENCY MER-
CHANTABILITY, OR FUNCTIONING OF THIS DOCUMENT. IN NO EVENT WILL IEEE BE
LIABLE FOR ANY GENERAL, CONSEQUENTIAL, INDIRECT, INCIDENTAL, EXEMPLARY, OR
SPECIAL DAMAGES, EVEN IF IEEE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright © 2011 IEEE. All rights reserved.

User Note:
Some versions of Adobe will prompt the reader to interact with the EssentialSet using the
“Forms” functionality. Please disregard such a prompt, minimizing the pink bar and selecting
“do not show again” when asked.

{EssentialSet}

{ }Use –/+
at any time

to hide/show
button display.

TABLE OF CONTENTS

Introduction
by Mike Hinchey, Lorcan Coyle, Bashar Nuseibeh,
and José Luiz Fiadeiro

Guest Editors’ Introduction:
Evolving Critical Systems
by Lorcan Coyle, Mike Hinchey, Bashar Nuseibeh,
and José Luiz Fiadeiro
Provides an overview of Evolving Critical Systems and
introduces the other papers in this collection.

Evolving Embedded Systems
by Gabor Karsai, Fabio Massacci, Leon Osterweil,
and Ina Schieferdecker
In this article, the authors discuss four selected aspects
of evolution in embedded systems: the different time-
scales of evolution, the coevolution of processes and
systems, checking evolution at deployment time, and
the evolution of tests used to check system correctness.

Evolving Software Architecture
Descriptions of Critical Systems
by Tom Mens, Jeff Magee, and Bernhard Rumpe
To manage the complexity of developing, maintaining,
and evolving a critical software-intensive system, its
architecture description must be accurately and trace-
ably linked to its implementation.

Evolution in Relation to Risk and Trust
Management
by Mass Soldal Lund, Bjørnar Solhaug, and Ketil
Stølen
A methodology within risk and trust management in
general, and risk and trust assessment in particular,
isn’t well equipped to address trust issues in evolution.

Why Critical Systems Need Help
to Evolve
by Bernard Cohen and Philip Boxer
Classical engineering fails to model all the ways in
which a critical sociotechnical system fits into a larger
system. A study of orthotics clinics used projective
analysis to better understand the clinics’ role in a
healthcare system and to identify risks to the clinics’
evolution.

Simplicity as a Driver for Agile
Innovation
by Tiziana Margaria and Bernhard Steffen
Software and hardware vendors long avoided inter-
operation for fear of opting out of their own product
lines. Yet decisive change came to the automobile
industry from a holistic evolution and maturation on
many fronts.

Recommended References

About the Editors

{EssentialSet}

INTRODUCTION

EssentialSet | Evolving Critical Systems

There are few areas of modern
life in which software is not

an important (though often invis-
ible) component. The software in
our lives is increasingly complex;
its interaction with the real world
means that its requirements are in
a state of constant change. Many
non-software products and ser-
vices, from healthcare to transport,
education to business, depend on
reliable, high-quality software.

Software systems frequently need to
be modified in response to changes
in system requirements and in
their operational environment [1].
Such modification may involve the
addition of new functionality, the
adjustment of existing functions, or
the wholesale replacement of entire
sub-systems. All such change is
fraught with uncertainty—software
projects involving change frequently
fail to meet requirements, run over
time and budget, or are abandoned
[2].

As the ubiquity and complexity of
software increase, a requirement
has emerged for critical software
that can successfully evolve without
loss of quality—software that is en-
gineered from the start to be easily

changed, extended, and reconfig-
ured, while retaining its security, its
performance, and its reliability and
predictability.

Software Evolution
The problem of how to modify
software easily without losing
quality was widely understood and
discussed at the NATO Software
Engineering Conference in 1968 [3].
Lehman et al.’s early work on the
continuing change process of the
IBM OS360-370 operating systems
and the work that followed from
that led to a large body of research
into software evolution and the for-
mulation of eight “Laws of Evolu-
tion” [4].

There are three types of evolution
[1]:

1. corrective maintenance, used
to overcome processing failure,
performance failure, and imple-
mentation failure;

2. adaptive maintenance, which
would overcome change in data
environment (e.g., restructur-
ing of a database) and change
in processing environment (new
hardware, etc.); and

3. perfective maintenance, which
would improve design, which
might overcome processing
inefficiency and enhance both
performance and the system’s
maintainability.

More mature software, where many
(or all) of the key developers are
no longer in place, is seen as be-
ing harder to evolve than newer
software supported by its original
developers [2].

As software evolves in terms of
functionality, it often degrades
in terms of reliability. While it is
normal to experience failures after
deployment, and the goal of much
of software maintenance is to re-
move these failures, experience has
shown that evolution for new func-
tionality and evolution for mainte-
nance can both result in “spikes”
of failure. Over time, a traditional
system degrades as it evolves and
more, rather than fewer, failures are
experienced [2, 4].

Dynamic evolution (sometimes
called run-time or automatic evo-
lution) is a special case whereby
certain critical systems may need
to change during run-time, e.g., by
hot-swapping existing components

{EssentialSet}

EssentialSet | Evolving Critical Systems

or by integrating newly developed
components without first stopping
the system [5]. If this has not been
planned ahead explicitly in the
system, the underlying platform has
to provide a means to effectuate
software changes dynamically. In
terms of the software evolving itself
automatically, there are a number
of challenges beyond those faced
when a human drives the process.
Ubiquitous computing systems or
autonomic systems are often typi-
fied as consisting of large numbers
of distributed autonomic, often
resource-constrained embedded sys-
tems. Designers cannot fully predict
how a system will behave and how
it will interconnect with a continu-
ously changing environment. There-
fore, software must adapt and react
to change dynamically, even if such
change is unanticipated.

Critical Systems
Critical systems are systems where
failure or malfunction will lead to
significant negative consequences
[6]. These systems may have strict
requirements for security and
safety, to protect the user or oth-
ers [7]. Alternatively, these systems
may be critical to the organization’s

mission, product base, profitabil-
ity, or competitive advantage. For
example, an online retailer may be
able to tolerate the unavailability of
their warehousing system for sev-
eral hours in a day, since most cus-
tomers will still receive their orders
when promised. However, unavail-
ability of the website and ordering
system for several hours may result
in the permanent loss of business to
a competitor. A brief categorization
of types of critical systems is shown
in Table 1.

Evolving Critical Systems
Evolving systems (Lehman called
these “E-type” systems [4]) may:

•	 have evolved from legacy code
and legacy systems;

•	 result from a combination of ex-
isting component-based systems,
possibly over significant periods
of time;

•	 be the result of the extension of
an existing system to include new
functional requirements;

•	 evolve as the result of a need to
improve their quality of service,
such as performance, reliability,
usability, or other quality re-
quirements;

•	 evolve as a result of an inten-
tional change to exploit new

Table 1: Types of Critical Systems: Many systems have overlapping
aspects of criticality, e.g., a system might be both safety-critical
and business-critical.

Type of Critical Implication for Failure
Safety-Critical May lead to loss of life, serious personal injury, or

damage to the natural environment.

Mission-Critical May lead to an inability to complete the overall system
or project objectives; e.g., loss of critical infrastructure
or data.

Business-Critical May lead to significant tangible or intangible econom-
ic costs; e.g., loss of business or damage to reputation.

Security-Critical May lead to loss of sensitive data through theft or ac-
cidental loss.

{EssentialSet}

EssentialSet | Evolving Critical Systems

technologies and techniques, e.g.,
service-oriented architectures, or
a move toward multi-core-based
implementations;

•	 adapt and evolve at run-time
in order to react to changes in
the environment or to meet new
requirements or constraints.

Most large and complex software
systems are evolving systems. The
alternative to system evolution is
total replacement, often not feasible
for cost and other reasons.

Conclusions
Critical computer-based systems are
ever more important in our lives,
but as they age they will be in need
of increasing amounts of effort to
evolve them to remain useful [4].
Much work needs to be done to
help ease this burden.

Evolving Critical Systems is a re-
search area that tackles some of the
challenges and important research
questions that face us. Given that
software evolution can be seen as a

compromise between cost and risk,
the most pressing question to ask
is: Which processes, techniques,
and tools are most cost-effective for
evolving critical systems?

Mike Hinchey
Lorcan Coyle

Bashar Nuseibeh
José Luiz Fiadeiro

June 2011

{EssentialSet}

EssentialSet | Evolving Critical Systems

Guest Editors’ Introduction:
Evolving Critical Systems

by Lorcan Coyle, Mike Hinchey, Bashar Nuseibeh,
and José Luiz Fiadeiro

Computer, vol. 43, no. 5, May 2010, pp. 28–33
DOI bookmark: http://doi.ieeecomputersociety.org/10.1109/MC.2010.139

EssentialSet | Evolving Critical Systems

COMPUTER 28

GUEST EDITORS’ INTRODUCTION

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

have greater potential to affect more people. This
increases the potential for software to be considered
critical even when it isn’t complex.

•	 People-in-the-loop. As software is deployed to control
systems in which human actors participate, the issue
of human interactions with software becomes more
important.

•	 Entanglement. Software dependencies have become
more complex, and much real-world software is
entangled with software developed by third-party
providers.

• Increased evolution tempo. The tempo of evolution will
continue increasing as users expect more from soft-
ware. The software market is often unforgiving when
even small changes can’t be done cheaply and quickly.

Taken together, these changes characterize evolving
critical systems and frame the research agenda in this
emerging area (www.lero.ie/ecs/whitepaper).

ECS MANIFESTO
ECS research challenges add to the broad software

engineering research agenda, with more of a focus on
predictability, quality, and the ability to change. Table
1 characterizes the criticality of software engineering
research challenges for ECS.

W
e believe that the software engineering
community must concentrate efforts
on the techniques, methodologies, and
tools needed to design, implement, and
maintain critical software systems that

evolve successfully. This special issue summarizes many
of the topics discussed and embodies what we believe to
be some of the most important research challenges for
evolving critical software systems—without incurring
prohibitive costs.

Several widespread changes in software engineering
highlight the importance of evolving critical systems (ECS).
We’ve identified the following five game changers:

• Software ubiquity. More software is being deployed in
more consumer devices, which means failures are
more likely to affect ordinary people.

•	 Software criticality. As software embeds itself deeper
into the fabric of society, single software failures

Lorcan Coyle, Mike Hinchey, and Bashar Nuseibeh, Lero—the Irish Software Engineering
Research Centre
José Luiz Fiadeiro, University of Leicester

This special issue brings together key soft-
ware engineering researchers and practi-
tioners who both influence their organiza-
tions and evaluate the emerging practice of
developing these new systems.

GUEST EDITORS’
INTRODUCTION:
EVOLVING
CRITICAL
SYSTEMS

EssentialSet | Evolving Critical Systems

29MAY 2010

requirements in dynamic environments, especially auto-
nomic and adaptive software environments. We must also
develop strategies for evolution that tolerate uncertainty
in the operational environment, which changes determin-
istically, nondeterministically, or stochastically. We must
then ensure that software never evolves into a state of
unstable behavior.

Given the tensions between the need for software
change and the danger implicit in changing critical soft-
ware, the most pressing question for practitioners is which
processes, techniques, and tools can most cost-effectively
evolve critical systems. We believe a concerted focus from
the research community to overcome these challenges
will be needed for ECS to have an impact on software
engineering.

IN THIS ISSUE
This special issue contains contributions from leading

participants in the field. In “Evolving Embedded Systems,”
Gabor Karsai and coauthors discuss the importance of
considering the interplay among requirements, processes,
deployments, and tests’ evolution when developing embed-
ded systems. They also address challenges relating to the
different evolutionary time scales—whether the system is
evolved at design time, load time, or runtime.

In addition, the authors examine the importance of
process and system co-evolution, especially with regard
to embedded systems, discussing how verification can be
used to check the correctness of load-time evolution. They
conclude by addressing the difficulties inherent in testing
software that evolves at load time or runtime, while also
relating it to the use of online testing, built-in testing for
load-time evolution, and the need to evolve the tests them-
selves, especially for runtime evolution.

In “Evolving Software Architecture Descriptions of
Critical Systems,” Tom Mens and coauthors discuss the
use of architectural descriptions to describe software-
intensive systems and how they can be used to handle
increasing complexity to mitigate the risks incurred
in constructing and evolving these systems. They also
assess the use of model-transformation approaches to
evolve models of software architectures and the co-
evolution of architecture descriptions, software design,
and implementation. They call for architectural change
to be considered a first-class construct that ensures

The fundamental research question underlying ECS
research is this: how do we design, implement, and main-
tain critical software systems that are highly reliable while
retaining this reliability as they evolve, without incurring
prohibitive costs? Several demands must be met before
ECS’s ideals can be realized.

The changing development environment, for exam-
ple, proves that we must maintain the quality of critical
software despite constant change in its teams, processes,
methods, and toolkits. Likewise, we must improve our
existing software design methodologies so that they fa-
cilitate the support and maintenance of ECS—how can
we use agile development methodologies to evolve critical
software?

We must also specify what we want to achieve during
an evolution cycle and confirm that we’ve achieved the
intended result (verification) and only the result intended
(validation). We must thus elicit and represent require-
ments for change such that we ensure the changes take
place correctly. Furthermore, we must develop tech-
niques for better estimating specific evolution activities
a priori, only attempting software change when we know
for certain that evolution will be successful and that
benefits will outweigh costs. For example, some systems
shouldn’t evolve at all because the cost and risk of per-
forming evolution successfully will exceed the system’s
value by orders of magnitude. To prevent cost and time
overruns, we must work toward developing objective
criteria to help us decide whether a given system is in
this class.

All these requirements demand strategies to make
model-driven, automatic evolution a better alternative
to manual change. In cases where it isn’t appropriate to
mechanize change, we must develop heuristics for deter-
mining when such an approach is viable. When humans
must perform the change, we need to develop support tools
that make this a less risky enterprise.

We also need improved tools for traceability that keep
various software artifacts—such as documentation and
source code—in sync throughout the evolution cycle.
Where regulatory compliance is required, these tools must
ensure that evolution results in compliant software.

Finally, during runtime evolution, we must ensure that
developers adhere to runtime policies. We do so by devel-
oping techniques that can monitor and model changing

Table 1. Critical system types.

Type Implications for failure

Safety-critical Can lead to loss of life, serious personal injury, or damage to the natural environment

Mission-critical Can lead to an inability to complete the overall system or project objectives, such as loss of critical infrastructure or data

Business-critical Can lead to significant tangible or intangible economic costs such as loss of business or damage to reputation

Security-critical Can lead to loss of sensitive data through theft or accidental loss

Table 2. Computation requirements of
 physical simulations at 30 FPS.

Simulation
 type Data set

Execution
time

(percent)

Rigid body 1,000 bodies 16.6

5,000 bodies 72.2

10,000 bodies 853.7

20,000 bodies 1,573.3

Fluid 30,000 particles 302.1

100,000 particles 813.2

300,000 particles 2,100.4

Cloth 1,000 particles 0.4

4,000 particles 1.9

16,000 particles 7.6

66,000 particles 32.4

262,000 particles 127.4

1,000,000 particles 565.5

EssentialSet | Evolving Critical Systems

GUEST EDITORS’ INTRODUCTION

COMPUTER 30

Dieter Lienert and Stefan Kriso, Robert Bosch GmbH

C onsider the problem of assessing criticality in automotive
systems. One important aspect of most such systems is

functional safety. This is addressed in ISO 26262, a forthcoming
standard for functional safety of electrical and electronic (E/E)
systems in road vehicles. Currently, a draft international standard
(DIS), it’s expected to be approved by the International Organization
for Standardization by mid-2011. To reduce unpredictable product
liability risks, all road vehicles brought to market after publication
of the final standard must conform to ISO 26262. This means that
E/E system developers must consider all development process and
product properties requirements mandated by the standard from
the beginning.

To specify the criticality of E/E system malfunctions, ISO
26262 defines the Automotive Safety Integrity Level (ASIL),
which ranges from A (lowest) to D (highest); a QM value indi-
cates that a malfunction isn’t safety-related. As Figure A
shows, developers must estimate three parameters to deter-
mine ASIL:

•	 Exposure	(E). This factor defines the probability of a system
being in an operational situation that can be hazardous if
coincident with a failure mode; rated on a scale from E0
(incredible) to E4 (high probability).

•	 Controllability	 (C). This factor assesses the potential of
avoiding specific harm or damage through the timely reac-
tions of the persons involved; rated on a scale from C0
(controllable in general) to C3 (difficult to control or
uncontrollable).

•	 Severity	(S). This parameter measures the potential extent
of harm to an individual in a specific situation; rated on a
scale from S0 (no injuries) to S3 (life-threatening or fatal
injuries).

Various interpretations of the categories’ meaning have been
defined for E, C, and S. To avoid different ASIL classifications for
the same malfunction, the automotive industry must establish
common criteria.

An appropriate system design makes reducing ASIL classifica-
tions for some elements, a process known as ASIL decomposition.
In this case, the elements’ independence after decomposition
must be assured—“lower-quality” parts mustn’t affect the opera-
tion of “critical” parts that assure safety.

For example, software malfunctions within the electronic actu-
ator pedal (EGAS) system may lead to the ASIL B, as the top of
Figure B shows. This is decomposed into QM for the function level
and B for the monitoring level (as the bottom of the figure shows),
which assures safety by switching off the power stages if the level
malfunctions.

In the case of E/E systems, automotive engineers are thus
guided by a well-established set of different safety-integrity
levels rather than a general notion of criticality. However, techni-
cal challenges arise from the problem of coping with different
ASILs within one application. And this situation will probably
occur more frequently given the growing trend to build function-
ally cooperating networks of originally separate systems.

More challenges arise if safety requirements conflict with
other types of criticality, such as system reliability and availability
(quality of service). For example, a fail-safe solution like switching
off the power stages in the EGAS might lead to customer dissatis-
faction if it occurs too often.

Dieter Lienert	is	the	head	of	a	group	for	the	engineering	of	soft-
ware-intensive	systems	at	Robert	Bosch	GmbH.	Contact	him	at		
dieter.lienert@de.bosch.com.

Stefan Kriso	is	a	senior	project	manager	at	Robert	Bosch	GmbH.	
Contact	him	at	stefan.kriso@de.bosch.com.

ASSESSING CRITICALITY IN AUTOMOTIVE SYSTEMS SMART-CARD CERTIFICATION

QME1
C1 C2 C3

S1

S2

S3

QM QM
QME2 QM QM
QME3 QM A
QME4 A B
QME1 QM QM
QME2 QM A
QME3 A B
AE4 B C

QME1 QM A
QME2 A B
AE3 B C
BE4 C D

Figure A. Automotive Safety Integrity Level
determination. Electrical/electronic system
developers must estimate three parameters—
exposure (E), controllability (C), and severity (S)—to
determine a malfunction’s AWIL (Source: ISO/DIS
26262-3, Table 4.)

Functioning level

µC

Sensors

Power
stages Engine

Freedom from
interference has
to be justi�ed

QM

Monitoring level ASIL B

Functioning level

µC

Sensors

Power
stages Engine

Monitoring level

ASIL B

Figure B. Example of ASIL decomposition for the electronic actuator
pedal (EGAS) system. Top: Software malfunctions in the microcontroller
(µC) are classified as ASIL B. Bottom: the monitoring level is classified as
ASIL B, while the function level can be classified as QM if freedom from
interference between the levels can be justified.

EssentialSet | Evolving Critical Systems

31MAY 2010

tesian cut presents a mismatch between the model that
defines a system and the reality of its interaction with
stakeholders; the Heisenberg cut presents a mismatch
between what behaviors can and can’t be predicted by its
users, independently of their use of it; and the Endo-exo
cut reflects the difference between what can and can’t
be directly known by clients about their own needs. By
enabling the members of and stakeholders in a sociotech-
nical system to analyze and project the experience of their
own participation, the authors gain an understanding of
how the orthotic service makes the three cuts and identify
changes that could improve it. Significantly, these changes
were ultimately rejected by the UK’s National Health Ser-
vice. The authors suggest that this stemmed from a failure
to understand the ecosystem in which the service was
embedded and the wider implications of these changes
beyond the orthotics services.

I
n addition to this introduction, we’ve included three
shorter practitioner contributions from Robert
Bosch GmbH, Security Labs—Gemalto, and the
Directorate General for Informatics in the European
Commission.

co-evolution between the architecture descriptions and
their implementation.

In “Evolution in Relation to Risk and Trust Management,”
Mass Soldal Lund and coauthors argue that risk and trust
management methodologies in general, and assessment
in particular, aren’t well-equipped to deal with evolution.
They go on to explore risk assessment from the perspec-
tives of maintenance, in which old risks must be updated
to take into account new risks introduced by changes
before and after, in which the assessor must be aware of
current risks, future risks, and risks introduced by the
change process itself; and continuous evolution, which
involves identifying and assessing how risks evolve. The
authors also explore using each of these two perspectives
from the specific viewpoint of the risk that trust relations
impose on a system. They assert that the evolution of
trust is much more challenging, given the highly dynamic
nature of trust relations.

Finally, in “Why Critical Systems Need Help to Evolve,”
Bernie Cohen and Philip Boxer analyze the difficulties in
evolving complex sociotechnical systems by using the
provision of orthotic services in the UK as an exemplar.
They use three cuts to address the risks of ECS. The Car-

ASSESSING CRITICALITY IN AUTOMOTIVE SYSTEMS SMART-CARD CERTIFICATION
Boutheina Chetali, Security Labs—Gemalto

Smart-card certification’s evolution can’t be tackled as a whole,
but only as an update evolving into a new service or capability.

The software’s update focuses on the context of product
surveillance and maintenance, two processes clearly defined by
the certification scheme. To update a certified product and
maintain the certificate, the developer must provide evidence
that this update has no security impact.

Open smart cards
Requirements such as these could burden a business model,

where software updates must be frequent to keep pace with the
rapid evolution of specifications. However, the most interesting
evolution deals with new services first, then with new code
applications. For that, the trend is the certification of “open”
smart cards.

Smart cards that have been certified as “open” could be used
to load any kind of applications through binary code when in the
field, while keeping its certificate intact. An open card has no
applications onboard and essentially becomes an “operating
system”—such as a Java Card platform.

This sophisticated application manages card resources
securely by, for example, loading, installing, deleting, and deliv-
ering updates. The openness relies on the loading mechanism
and its isolation properties, and these security mechanisms have
been evaluated during certification to provide the necessary
guarantees that the product can load any code and that two dif-
ferent applications can remain secure and protected from each
other.

Certification rules
To maintain stability, certification includes rules called hypothe-

ses that applications must respect before being loaded onto the
card. These rules rely on blocking attack paths. One well-known rule
advises that code be checked by a bytecode verifier, which means
the application must be bytecode-verified before loading, if the
onboard verification is not a feature of the card.

The rules set represents the card issuer policy, but if the appli-
cations originate elsewhere, in different market sectors that don’t
have the same historic level of security requirements, such as
banking and mobile communication, a common agreement on
policy rules could present a complex task. Therefore, it seems
obvious that if the product is protected against any kind of appli-
cation that could be loaded on the card, the underlying software
must include a large set of protective countermeasures.

For a constrained-resources device such as a smart card,
adding ever more software countermeasures or onboard verifica-
tion leads to performance issues during execution and also
consumes card-memory space. Both are crucial for the end user’s
satisfaction: the first is response time to the request, the second
the number of applications that can load onto the product.

Essentially, then, the challenge resides on performance rates,
and a trade-off must be made between security and speed. So the
notion of evolution is not the same for each sector: the lifetime of
a banking card differs from that of a SIM card. This is why taking
certification requirements and evolution requirements for cards
into account when hosting applications from different market sec-
tors poses a daunting challenge for the smart-card industry.

Boutheina Chetali	manages	the	Formal	Methods	Group	at	Security	
Labs—Gemalto.	Contact	her	at	boutheina.chetali@gemalto.com.

EssentialSet | Evolving Critical Systems

GUEST EDITORS’ INTRODUCTION

COMPUTER 32

Declan Deasy and Franck Noël, Directorate General
for Informatics, European Commission

S ixty years ago, European leaders founded what has become the
European Union. Starting with the European Coal and Steel

Community in 1951, efforts to promote policy cooperation on the
continent have dramatically expanded from energy to embrace
agriculture, regional development, information technology,
research, and more. The EU has also widened its geographical
scope. Starting as a community of six member states, it has become
a union of 27 members with 500 million people and a single
currency, the euro.

The EU is a striking example of the positive transformation
of mentalities and culture. European political integration has
been accompanied by the creation of a new institutional
architecture to address the complexity of new policies, deci-
sion-making processes, partners, and challenges in an
ever-changing world. The rhythm and path of European integra-
tion have largely been influenced by geopolitical, social, and
historical factors. However, technological evolution has also
played a major role. In the past 60 years, information and commu-
nication technologies (ICT) have emerged from research labs to
become essential elements of Europeans’ daily lives at work,
home, and play. Without ICT, the EU would have remained an
abstract, paper-based construction.

Many such systems are critical to the EU’s mission, political
objectives, and reputation; their failure would lead to significant
negative political consequences. As such, they have strict require-
ments for security and safety to protect their information assets
and users. For example, customs unions rely on various control
systems to manage the flow of goods and people across member-
state borders. Consider the Schengen Area, which allows free
movement of EU citizens without passports. This wouldn’t be
possible without the accompanying information system. Euro-
pean laws are easily accessible online to citizens and lawyers via
the EUR-LEX system. The Internal Market Information system
underpins the Single Market, in particular the Services Directive.
The EU Structural Funds program, whose regional financing
development is managed electronically, accelerates procedures,
increases the reliability and transparency of transactions, and
ultimately contributes to better use of taxpayers’ money. In the
environmental area, the Community Independent Transaction
Log is at the core of the European carbon emission trading
scheme implemented as part of the Kyoto Protocol.

The story doesn’t end there. A new era of collaboration
among public actors is quickly emerging to tackle global chal-
lenges such as the current economic crisis and climate change.
This effort requires the support of a new class of cross-border
and cross-sector critical information systems capable of evolv-
ing over time to accommodate disparate political and user
needs. In the Ministerial Declaration on eGovernment, unani-
mously approved in Malmö, Sweden, in November 2009, EU
public administration ministers recognized that “eGovernment
has not only become mainstream in national policies but has also
reached beyond national boundaries to become an important
enabler to deliver European-wide policy goals across different
sectors.” They pledged to jointly strive to achieve the following
policy priorities:

•	 “Citizens and businesses are empowered by eGovernment
services designed around users’ needs and developed in

collaboration with third parties, as well as increased access
to public information, strengthened transparency and
effective means for involvement of stakeholders in the
policy process”;

•	 “Mobility in the Single Market is reinforced by seamless
eGovernment services for the setting up and running of a
business and for studying, working, residing, and retiring
anywhere in the European Union”; and

•	 “Efficiency and effectiveness is enabled by a constant effort
to use eGovernment to reduce the administrative burden,
improve organizational processes and promote a sustain-
able low-carbon economy.”

Aligned with this declaration, the European Commission is pre-
paring to modernize its portfolio of mission-critical information
systems to deliver and operate smart e-government services that
are innovative and built from a user-centric viewpoint, enabling
their participation in the underlying processes (empowerment);
and streamline administrative processes in a learning organization
to improve effectiveness, efficiency, and transparency, and to share
and value intellectual assets through appropriate knowledge-
management approaches. This new generation of critical systems
will be built on three principles: harmonization and convergence of
business processes, reusability and interoperability of information
systems or systems components, and sharing services at the infra-
structure level. These three layers of the EC’s IT Enterprise
Architecture Framework will be enabled by an organization pos-
sessing the necessary IT governance arrangements and project
management methodologies supporting top-caliber staff whose
skills and knowledge will be continuously improved through col-
laboration in multidisciplinary teams.

The new mission-critical systems will be developed under
the auspices of the EU’s Interoperability Solutions for Euro-
pean Public Administrations (ISA) program, which came into
being on 1 January 2010. ISA’s focus is on back-office solutions
to support the interaction between European public adminis-
trations and the implementation of EU policies and activities. It
underlines the key role that standards and interoperability at
all levels—legal, organizational, semantic, and technical—will
play in ensuring these new systems contribute to European
integration. Developments will conform to the ISA’s European
Interoperability Strategy, will be based on its European Interop-
erability Framework, and will respect the related architectural
guidelines. The program thus defines the architecture for the
next generation of evolving critical information systems upon
which the EU will rely to implement the Europe 2020 vision articu-
lated by EC President José Manuel Barroso.

E-government is now mainstream; in the EU and elsewhere it
will be the catalyst in transforming public administrations over
the next decade. The challenge for today’s public-sector CIOs is to
build evolving critical information systems that offer more online
public services, streamline administrative procedures and cut red
tape, and implement innovative service delivery mechanisms.
The emerging evloving critical systems research domain will con-
tribute to meeting this challenge.	

Declan Deasy	is	Director	of	Information	Systems	at	the	European	
Commission	in	Brussels.	Contact	him	at	declan.deasy@ec.europa.eu.

Franck Noël	is	Deputy	Head	of	Unit	in	the	European	Commission	in	
Brussels.	Contact	him	at	franck.noel@ec.europa.eu.

CRITICAL SYSTEMS ENABLING EUROPEAN INTEGRATION

EssentialSet | Evolving Critical Systems

33MAY 2010

Mike Hinchey is scientifi c director of Lero and a profes-
sor of software engineering at the University of Limerick.
His research interests include self-managing software and
formal methods for system development. Hinchey received
a PhD in computer science from the University of Cam-
bridge. He is a senior member of IEEE and currently chairs
the IFIP Technical Assembly. Contact him at mike.hinchey@
lero.ie.

Bashar Nuseibeh is a professor of software engineering
and chief scientist for Lero. He is also a professor of com-
puting at The Open University, UK, and a visiting professor
at Imperial College London and the National Institute of
Informatics, Japan. His research interests include require-
ments engineering and design, security and privacy, and
technology transfer. Nuseibeh holds a PhD in software engi-
neering from Imperial College London and is editor in chief
of IEEE Trans. Software Eng. and editor emeritus of the
Automated Software Eng. J. He is also a fellow of the British
Computer Society (BCS) and the Institution of Engineering
and Technology, and an Automated Software Engineering
Fellow. Contact him at bashar.nuseibeh@lero.ie.

José Luiz Fiadeiro is a professor of software science and
engineering in the Department of Computer Science at
the University of Leicester. His research interests lie in the
mathematical foundations of software system modeling,
including software architecture, coordination models and
languages, parallel and distributed system design, and
service-oriented computing. Fiadeiro received a PhD in
mathematics from the Technical University of Lisbon. He
is a fellow of the BCS. Contact him at jose@mcs.le.ac.uk.

Dieter Lienert and Stefan Kriso describe the emerging
functional safety standard for electrical and electronic
automotive systems (ISO 26262) and discuss the challenges
in assessing criticality in automotive systems.

Boutheina Chetali points out that the smart-card in-
dustry faces a significant challenge in managing both
certifi cation and evolution requirements.

Finally, Franck Noël and Declan Deasy discuss how Eu-
ropean integration within the EU has, in many cases, been
enabled and accelerated by the development and evolution
of their technical infrastructure.

Acknowledgments
This special issue resulted from a workshop held in Schloss
Dagstuhl, Germany, in December 2009. The gathering brought
together key software engineering researchers and practitio-
ners in positions to infl uence their organizations’ research
direction and discuss the emerging theme of ECS.

This work was supported in part by Science Foundation
Ireland grant 03/CE2/I303_1 to Lero—the Irish Software En-
gineering Research Centre (www.lero.ie). We thank Schloss
Dagstuhl for hosting the perspectives workshop, and all the
workshop participants whose discussions led to this special
issue.

Lorcan Coyle is a research fellow at Lero in the Univer-
sity of Limerick. His research interests include autonomic
computing, context awareness, pervasive computing, and
machine learning. Coyle received a PhD in computer sci-
ence from Trinity College Dublin. He is a member of the
Institution of Engineers of Ireland. Contact him at lorcan.
coyle@lero.ie.

CRITICAL SYSTEMS ENABLING EUROPEAN INTEGRATION

Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

Where Are We Headed?

Rich Internet applications are a heterogeneous family
of solutions, characterized by a common goal of
adding new capabilities to the conventional hypertext-
based Web. RIAs combine the Web’s lightweight
distribution architecture with desktop applications’
interface interactivity and computation power, and
the resulting combination improves all the elements
of a Web application.

Read the latest issue of IEEE Internet Computing now!

www.computer.org/internet

M
a

y
 •

 J
u

n
e
 2

01
0

{EssentialSet}

EssentialSet | Evolving Critical Systems

Evolving Embedded Systems

by Gabor Karsai, Fabio Massacci, Leon Osterweil,
and Ina Schieferdecker

Computer, vol. 43, no. 5, May 2010, pp. 34–40
DOI bookmark: http://doi.ieeecomputersociety.org/10.1109/MC.2010.135

EssentialSet | Evolving Critical Systems

COMPUTER 34

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

increased expertise causes them to seek more operational
options.

All these drivers can lead to specific technical problems
for embedded systems:

•	 Finely crafted and optimized designs must be main-
tained and evolved with great care—mass-produced
embedded systems, for example, are often optimized
to minimize resource consumption, and evolutionary
modifications must avoid violating this property.

•	 Safety- and mission-critical embedded systems re-
quire system verification in some form, and this can
be a bottleneck—the current practice of complete re-
verification is very expensive.

•	 The evolution process itself must be optimized be-
cause it’s typically performed under a tight deadline;
moreover, any change must be minimal, yet maxi-
mally effective, to meet the previous two challenges.

•	 Because embedded systems are often deployed in
critical applications, they must evolve in vivo—they
can’t go offline for a long time.

These challenges can best be met through a combination
of techniques and technologies. We discuss evolution on
different timescales and in the context of user processes,
load-time verification, and tests for checking system cor-

E
mbedded systems span a wide range of domains,
from household applications in appliances,
entertainment devices, and vehicles to critical
applications in patient-monitoring systems,
industrial automation, and command-and-

control systems. Several specific drivers can shape an
embedded system’s evolution. Many consumer-oriented
systems, for example, undergo rapid changes because
of market pressures to come up with new products or
improve capabilities in existing ones. Another driver
is hardware obsolescence—for example, a particular
hardware component might need replacement, or new
special-purpose hardware might replace software func-
tions. Existing platforms might also need additional
functions: if an embedded system vendor identifies a novel
business opportunity, it might have to update existing
and deployed systems to capitalize on that opportunity.
Finally, users often invent new ways to manipulate exist-
ing systems, either to meet changing needs or because

Integrated and embedded systems have be-
come an invisible yet crucial part of our
daily lives, making their continuous and
trouble-free evolution of great importance.

Gabor Karsai, Vanderbilt University

Fabio Massacci, University of Trento, Italy

Leon J. Osterweil, University of Massachusetts Amherst

Ina Schieferdecker, Fraunhofer FOKUS and Technical University Berlin, Germany

EVOLVING
EMBEDDED
SYSTEMS

EssentialSet | Evolving Critical Systems

35MAY 2010

The key word is evolution: making
the system better to satisfy some
optimization function.

rectness. Our goal is to give a broad overview of relevant
embedded system issues and some potential solutions.

EVOLUTIONARY TIMESCALES
System evolution can occur on multiple timescales.

Design time
Design-time evolution (DTE) offers many potential

subjects for evolution. First, system design can evolve
because of changes in requirements, the need for im-
provements, or the need to fix deficiencies. Second,
system implementation can evolve—sometimes in con-
cert with design, sometimes independently. Third, the
tools used to create and analyze the design and imple-
mentation can evolve, although at a price: they might
force developers to modify their designs or implementa-
tions to comply with new versions of tools. In extreme
cases, the design or even the implementation language
can change, triggering the problem of carrying forward
existing engineering artifacts.

Tool support can help address DTE, but although re-
search tools are available, industrial-quality tools aren’t
quite there yet. One key problem is the need to preserve or
evolve design abstractions that may or may not be explicit
in a design and are very rarely explicit in the implementa-
tion. If designs are represented as models in, for instance,
UML, then transformation-based approaches could be
useful.1 Model-based, generative approaches offer an
opportunity to facilitate evolution because models can
typically be manipulated programmatically through an
API and are on a much higher level of abstraction than
code. However, designers still need tool-supported, higher-
order techniques such as model transformations to express
their intent. Many modern development environments
now offer assistance with code refactoring, but design
refactoring support is often lacking.

There are serious challenges in evolving the design and
implementation of embedded systems—careless modifica-
tions can lead to major rework. One problem stems from
the embedded code’s emergent, nonfunctional properties:
memory footprint, execution time, and stack usage are all
difficult to estimate directly from the design. Thus, when
the design or implementation changes, developers must
determine these emergent properties (possibly through
simulation and testing), and if they’re unsatisfactory, revise
the changes, which can lead to extensive and expensive
iterations.

Another problem comes from the need to verify the
embedded code that actually runs on the execution plat-
form. Verifying code is difficult for a regular system, but
for an embedded one it’s even more complex because the
code doesn’t run in isolation, but on an execution platform
whose properties must be explicitly known. Evolving an

embedded system also means evolving the “proofs” about
its correctness.

Load time
Load-time evolution (LTE) occurs when a system evolves

in the field but is not in active operation. It is sometimes
viewed as an operator-induced change in a system’s con-
figuration, but the change could be quite complex and lead
to a new, “evolved” system. For instance, it’s now custom-
ary for mobile phone users to download new applications
that can connect to a GPS satellite and send their current
geographical coordinates over the Internet to a social net-
working site: a major “evolution” in the phone’s software.

The main question of LTE in embedded systems is again
verification: how to prove that the evolved system is cor-
rect. This is important because fixing embedded systems
in the field could be quite expensive. Another relevant
question is how the evolution happens if it is user-driven
instead of vendor-driven. Users aren’t interested in low-
level changes—they want specific system features and
capabilities. An “LTE agent,” or built-in system tool that
translates user preferences and system constraints into
low-level evolutionary changes on the system, could be a
solution here.

Runtime
Runtime evolution (RTE) means changing the system

while it is in active use. The evolutionary process is trig-
gered by a system-made observation, possibly involving
reflection and reasoning on the system’s behalf. Few such
systems exist today, but autonomic computing and au-
tonomous vehicles offer some examples. The key word is
evolution: making the system better to satisfy some op-
timization function. RTE is a deliberated and reasoned
choice for change made by the system itself toward a new
mode that improves it. What the system evolves to isn’t
necessarily predefined; rather, it’s computed on the fly
according to the current system state and environment.

Naturally, engineering RTE in systems is challenging,
and the problems are well-known: What is the RTE’s ex-
pected and allowed scope? How does the system detect
the need for evolution? How does the system reason
about what to evolve to? How is the actual evolution ex-
ecuted? How does the system verify the evolutionary
step? What’s a human user’s role in the process? These

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 36

questions are especially acute for embedded systems
because of their often critical, resource-constrained,
and closed nature. Perhaps the biggest challenge of all
is how to ensure the dependability of embedded systems
that evolve at runtime. Some recent research roadmaps
and early results come primarily from the area of self-
adaptive systems.2

CONCURRENT EVOLUTION OF
SYSTEMS AND PROCESSES

Any system in use today will experience pressure to
evolve by the very fact of its being in use, which implies
that it meets—at least to some extent—real-world needs.
This is particularly true for embedded systems because

their very definition implies that they participate in real-
world activities and processes. Most successful processes
tend to allocate rote and mechanical tasks to software
components in embedded systems, leaving humans to
do relatively more creative work that requires insight and
intelligence. Thus, successful embedded systems typically
tend to grow in scope and power by taking on increasingly
large quantities of rote and mechanical work. But in so
doing, it isn’t unusual for new mechanical and software ca-
pabilities to facilitate new exercises of human intelligence
and creativity. Thus begins a cycle: real-world processes
levy strong requirements on the embedded systems that
they use, and as the embedded software components in
these systems meet these requirements, they create pres-
sures on the processes themselves to absorb more tasks.
We can expect this cycle to continue indefinitely, as long
as the embedded system and its software components
experience actual use.

A key challenge for embedded systems is to continually
provide satisfactory services, even as they strive to provide
even more satisfactory capabilities. To do this, embedded
systems and the software components that they contain
must always demonstrably respond to an understood and
agreed-upon set of requirements. Typically, these require-
ments are derived principally from the processes in which
they’re used. Thus, for example, a surgical process can
impose specific requirements on the behaviors of doctors
and nurses, but also on devices such as infusion pumps
that are used in the process. The requirements imposed on

the infusion pump itself are passed down to the software
embedded in the pump as well.

Ultimately, embedded systems and their software
components can’t be considered to be absolutely correct
or satisfactory. Such systems can only be judged to be
correct or satisfactory relative to how well they meet the
requirements imposed on them by the processes using
them. An embedded system’s participation in a process
can also change expectations and desires. For example,
using a powerful vote-recording device in an election pro-
cess might cause poll workers to decide that they would
indeed like the device to check for duplicate voters, even
though the current process mandates that they perform
this task themselves. However, such desires shouldn’t be
translated into actual process changes unless all partic-
ipants’ behaviors have changed to conform to the new
process requirements. Thus, poll workers shouldn’t stop
performing manual checks to meet stronger security re-
quirements—at least not until software embedded in the
vote-recording device can address this requirement.

The need to synchronize process participant behavior
with process requirements must focus attention on how
to determine consistency. Technical approaches such as
model checking3,4 have proven to be effective in demon-
strating the consistency (or lack thereof) of bodies of code
or design with certain kinds of required properties. What’s
missing is a way to take process requirements and derive
from them requirements for process participant behavior.
Rigorous process definitions can best address this need.
Experience with the Little-JIL language5 suggests that this
is quite feasible, although a wide range of other languages
could also serve as effective bases for rigorously defin-
ing processes. The next step is for technologies to help
take such definitions and derive requirements on pro-
cess participant behavior from them. These requirements
can then be used as the basis for verifying and testing
embedded software. Approaches such as assume-guar-
antee-reasoning6 and model-carrying code7 (or its modern
variants8) offer some promise of effectively supporting
this capability.

VERIFICATION FOR LOAD-TIME EVOLUTION
A successful process that uses embedded systems can

drive an evolutionary change, but the processes themselves
shouldn’t change until it’s safe for them to do so. For ex-
ample, the success of applications running on smart cards
has led directly to a desire for smarter cards on which more
than one application can run. Owners of different trust
domains—banking, transportation, healthcare, telecom-
munications, and so on—want just one card on which they
can load and update their applications asynchronously
and independently from one another. Yet this change in
process requirements also changes the requirements for
the installation process. In addition to independent up-

Evolving embedded systems requires
a careful combination of verification
and testing methods for development,
load, and runtime evolution. For
efficient online verification and
validation, trusted and untrusted
software is to be treated separately.

EssentialSet | Evolving Critical Systems

37MAY 2010

dates, the different owners want
to ensure that no unwanted infor-
mation flows between the various
applications. If it were possible
to install all applications at once
before distributing the card to the
public, many techniques would
be available to check information
flow.3,4 Unfortunately, business
users want asynchronous updates.

What remains out of reach is
the combination of deploying new
applications on a smart card once
it’s in the field and keeping the se-
curity certification. This calls for a
costly manual review: developers
must prove that all possible card
evolutions are security-neutral so
that their formal proof of com-
pliance with Common Criteria
is still valid and doesn’t require
a new certificate. The natural
consequence is that no certified
multimarket sector smart cards
currently exist in the field, although both the GlobalPlat-
form and Java Card specifications support them.

An emerging solution to this problem is the use of
verification techniques to support LTE—that is, when
the software is updated on a device already in the field.
Sekar and colleagues suggested this basic idea when
they introduced the notion of model-carrying code7: an
application carries with itself a model to be verified at
runtime. Unfortunately, this concept hasn’t progressed
because of significant limitations in the proposed
model—for instance, it wasn’t possible even to state poli-
cies such as “you should only connect to URLs starting
with https://.”

The Security-by-Contract framework9 developed within
the European S3MS project (www.s3ms.org) has shown
concrete realization of the idea of complementing load-
time and runtime checking for mobile phones running
.NET and Java by using very expressive policies.8 US re-
searchers later ported the same approach to Google’s
Android platform.10 The basic idea behind Security-by-
Contract is that before loading software updates on the
device, we extract the software’s security-relevant behavior
and compare it against our policy. If this behavior is ac-
ceptable, we load the software; if not, we can decide to
use online monitoring techniques to make sure the soft-
ware doesn’t misbehave. This won’t generate too much
overhead, but in some cases it might not be feasible for
resource-limited devices.

Figure 1 shows the basic intuitive workflow behind Se-
curity-by-Contract. In the simplest mode, the embedded or

mobile device has just downloaded some new code that al-
legedly provides some desired functionality. How to check
that it isn’t harmful? We’re at the beginning of the process
in Figure 2; an untrusted code has been downloaded. We
first extract the application contract Claim using Con-
tractExtractor on the trusted part. At this point, we’re
interested in extracting security-relevant behaviors via
data-, control-, and information-flow analysis11 or from
the application’s manifest.10 We then check whether this
result matches the security policy Policy using Sim-
ulationChecker.9 If the simulation succeeds, we can
execute the code without further ado; otherwise, we use
Rewriter, which gives the ready-to-be-executed result
SafeCode.8 Of course, Rewriter might introduce some
overhead that, on embedded devices, might not be compu-
tationally acceptable. If the match with the policy is only
partial, we can optimize the enforcement mechanism by
using Optimizer, which gives the result OptPolicy—this
contains only the bits of policy with which the contract
wasn’t compliant.

Of course, this approach assumes that everything
can be done on the trusted side of the world—namely,
on the embedded system itself. However, not all em-
bedded systems have the same computational power:
we can do some elementary checking of information
flows on a smart card11 and full automata verification
on a mobile phone.8 In many cases, we must trade off
trustworthiness for computational power by deciding
which operation the device can do by itself and on which
operations it must rely for external help. At the extreme

Match policy

Digital signature or formal proof
can be obtained by
• Certi�cation process and signature
• Formal methods with proof generation
• Synthesized proof by certi�ed inline
 monitor in the code

Load-Time Evolution

Noncompliant
code

Not compliant
code

Compliant
wrapping

Platform
contract

Compliant
codeCode

Check evidence

Load code

Contract Trusted
contract

Code

If either
fails

Run at your
own risk!

Inline policy

Run without
overhead

Run with overhead

Evidence of
compliance of

code with
contract

Figure 1. Security-by-Contract for load-time execution. We must follow specific steps
to ensure that the code downloaded to a mobile or embedded device isn’t harmful.

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 38

end of the spectrum, as Figure 2 shows, we move most
of the components out of the trusted domain for the
simple reason that the trusted domain—the embedded
system—doesn’t have enough computing power.

After running ContractExtractor, we check the ap-
plication contract Claim against the application Code
using ClaimChecker. If Code doesn’t comply with Claim,
then we reject Code. However, rejection might be too re-
strictive, so another similar option is to directly deploy
the Policy object in charge of monitoring Code by using
Rewriter, which gives the result SafeCode. By using
load-time verification, we can thus overcome the limi-
tation that certification imposes on the business model
and achieve asynchronous evolution while guaranteeing
security. Unfortunately, this approach might be too costly
if we don’t need to actually ensure that nothing bad ever
happens with regard to safety and security, but we’re sat-
isfied that something good can possibly happen such as
liveness, and that the most blatant violations aren’t pos-
sible. In this setting, LTE verification might be effectively
replaced by testing the embedded system for the desired
behavior.

EVOLVING TESTS
Testing is the most widely used technique for evaluat-

ing a software-based system in its target environment:
developers typically don’t generate systems completely—a
thorough model-based design process ultimately produces
the system with all its ingredients in a formally verified

chain of transformations—or formally checks systems in a
way that completely verifies both system and environment.

DTE tests are fairly straightforward. They include re-
tests for bug fixes, regression tests for modifications of
existing functionalities, new tests for system extensions,
and modified or new tests when environment changes
affect the system itself. LTE and RTE tests are more dif-
ficult to define and perform. For LTE, when the system
evolves offline, the necessary “testware”—test experts,
environment, tools, and so on—is typically unavailable,
so even lightweight tests for major system functionalities
are hard to execute. One approach is to offer remote test
capabilities12 that enable testing an evolved system from a
remote site automatically. This is an established method
in other engineering disciplines such as automotive or
industrial automation and could be adopted for software-
intensive embedded systems as well.

An online setting is challenging because the tests aren’t
only remote but they also must evaluate the system in
its target environment, which risks corrupting or dam-
aging the system itself. However, testing must occur in
a controlled environment to make the tests repeatable
and stable in their results. The control typically includes
setting the system’s states and its environmental com-
ponents, which generally isn’t possible, necessitating a
mixture of explicit control and passive observation (and
deduction) instead. Such an approach helps minimize the
impact on the running system. On the other hand, system
functionalities must be elaborated as much as needed by
stimulating the system in addition to its productive use:
the system is stimulated with selected inputs, messages,
operation calls, and so forth to activate system reactions
that exhibit the functionality under consideration. The
contradictory goals of minimal impact and explicit setting
and stimuli are difficult to achieve, but approaches for
built-in tests13 provide some initial solutions.

Online tests require minimal functional interference
with the running system and with other connected sys-
tems to avoid functional outages, and minimal resource
consumption to avoid performance degradation. They
allow systems to test themselves for constraints on their

•	 environment, whether it follows the environmental
assumptions for which the system is built;

•	 configurations, whether the system is used in a setting
for which it’s constructed;

•	 usage scenarios, whether the system is used according
to envisaged scenarios; and

•	 their own reactions, whether the reactions are outside
of expected ranges.

Like LTE tests, RTE tests need to be online, but they
also must be able to dynamically adapt to system
changes during runtime. While LTE tests are rather

Security policy

Application contract

Optimizer

Untrusted code

Contract extractor

Simulation checker

Optimized security policy

Fail

Rewriter

 Inlined application code

Trusted Untrusted

Claim checker

Claim checker

 Execute

Reject

Fail

Reject
Fail

Figure 2. Load-time evaluation with trusted checking and
untrusted computing. When the device doesn’t have enough
computational power, we shift costly computation to
untrusted parties—checking their results is easier.

EssentialSet | Evolving Critical Systems

39MAY 2010

static because possible system changes are predeter-
mined, RTE tests must dynamically evolve whenever
the system evolves. Hence, RTE tests require supervi-
sory support to detect system changes during runtime
and test adaptation support to enable changes to the
tests accordingly.

Whenever tests identify faults, a supervisory system
should also offer corrective means to adjust the system
or its configuration where needed. Such a closed control
loop between system, tests, and the evolutions thereof
isn’t easy to handle, especially because errors detected
during testing can have their causes in the tests, in the
system’s requirements or specifications, or in the system
itself. Before claiming the system to be faulty, we must rule
out the other two options.

Using two different models for systems and tests
might be a solution14: separate test models help us reason
about systems and their tests on an abstract level, verify
that tests are semantically correct with regard to the
constraints defined by the system model, and derive
executable tests by using an automated test execution
platform. For evolving systems, the coordinated evolution
of system models and test models is a challenge in itself:
both must be synchronized, that is, consistent with regard
to the constraints they impose. Approaches to model-
based testing15 provide some initial solutions for deriving
tests on the fly when system models change. A delta ap-
proach, typically used in software debugging,16 could also
point a way forward.

In addition to functional tests that check a system’s
principal features and functionalities, nonfunctional
tests can be enhanced for evolving systems, including
tests for robustness to check that the system reacts safely
in case of unexpected inputs or usage scenarios from the
environment, for performance to check that it reacts as
timely as needed, for scalability to check that it keeps
its performance under an increasing load, and for secu-
rity to check that it can withstand attacks. As an initial
attempt to meet these challenges, we’ve developed an
approach for automated performance and scalability
tests and for automated test generation for embedded
systems.17 We’re also developing a generic approach for
the specification of reusable “X-in the loop” tests based
on the well-established modeling and testing technolo-
gies Matlab/Simulink and TTCN-3.18

E
mbedded systems pose special challenges
to system evolution: they’re embedded in a
changing environment, often interacting with
evolving processes of human organizations, and
thus must be verified because of their critical

nature. Complicating the situation, the analyses and test-
ing regimens used to verify them must evolve as well.

Both software engineering research and industrial prac-
tice need to improve to address these problems. While
admittedly underemphasized in software engineering
education, system evolution is crucial, and the challenges
discussed here will be addressed by improving on the
initial results we presented.

Acknowledgments
This work was in part sponsored by DARPA, under its Software
Producibility Program; the US National Science Foundation,
under award numbers CCR-0205575, CCR-0427071, and
IIS-0705772; and the EU, under the projects EU-FP7-FET-IP-
SecureChange and EU-FP7-IST-IP-MASTER. Any opinions,
findings, and conclusions or recommendations are those of
the authors and don’t necessarily reflect the views of DARPA,
the EU Commission, the US National Science Foundation, or
the US government.

References
1. T. Levendovszky and G. Karsai, “An Active Pattern Infra-

structure for Domain-Specific Languages,” to appear in
Electronic Comm. EASST, 2010; http://journal.ub.tu-berlin.
de/index.php/eceasst/index.

2. B.H.C. Cheng et al., “Software Engineering for Self-Adap-
tive Systems: A Research Roadmap,” Software Eng. for
Self-Adaptive Systems, LNCS 5525, Springer, 2009, pp. 1-26.

3. P. Bieber et al., “Checking Secure Interactions of Smart
Card Applets: Extended Version,” J. Computer Security, vol.
10, no. 4, 2002, pp. 369-398.

4. E. Hubbers, M. Oostdijk, and E. Poll, “From Finite State
Machines to Provably Correct Java Card Applets,” Proc. IFIP
TC11 18th Int’l Conf. Information Security (SEC 03), Kluwer
Publishers, 2003, pp. 465-470.

5. B. Chen et al., “Analyzing Medical Processes,” Proc. 30th
Int’l Conf. Software Eng. (ICSE 08), ACM Press, 2008, pp.
623-632.

6. J.M. Cobleigh, G.S. Avrunin, and L.A. Clarke, “Breaking Up
Is Hard to Do: An Evaluation of Automated Assume-Guar-
antee Reasoning,” ACM Trans. Software Eng. Methodologies,
vol. 17, no. 2, 2008, pp. 1-52.

7. R. Sekar et al., “Model-Carrying Code: A Practical Ap-
proach for Safe Execution of Untrusted Applications,” ACM
Symp. Operating Systems Principles (SOSP 03), ACM Press,
2003, pp. 15-28.

8. L. Desmet et al., “Security-by-Contract on the .NET Plat-
form,” Information Security Technical Report, vol. 13, no.
1, 2008, pp. 25-32.

9. N. Dragoni et al., “Security-by-Contract: Toward a Se-
mantics for Digital Signatures on Mobile Code,” Proc.
4th European PKI Workshop (EuroPKI 07), LNCS 4582,
Springer, 2007, pp. 297-312.

10. W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight
Mobile Phone Application Certification,” Proc. 16th ACM
Conf. Computer and Communications Security (CCS 09),
ACM Press, 2009, pp. 235-245.

11. D. Ghindici, G. Grimaud, and I. Simplot-Ryl, “An Informa-
tion Flow Verifier for Small Embedded Systems,” Proc.
Int’l Workshop Information Security Theory and Practices
(WISTP 07), LNCS 4462, Springer, 2007, pp. 189-201.

EssentialSet | Evolving Critical Systems

—George Orwell, “Why I Write” (1947)

All writers are vain,
sel� sh and lazy.

(except ours!)

“
”

TheæIEEEæComputeræSocietyæPressæisæcurrentlyæseekingæauthors.æ
TheæCSæPressæpublishes,æpromotes,æandædistributesæaæwideæ
varietyæofæauthoritativeæcomputeræscienceæandæengineeringæ
texts.æItæoffersæauthorsætheæprestigeæofætheæIEEEæComputeræ
Societyæimprint,æcombinedæwithætheæworldwideæsalesæandæ
marketing power of our partner, the international scientifi c
andætechnicalæpublisheræWileyæ&æSons.

ForæmoreæinformationæcontactæKateæGuillemette,æ
ProductæDevelopmentæEditor,æatækguillemette@computer.org.æ

www.computer.org/cspress

COVER FE ATURE

COMPUTER 40

12. P.H. Deussen, “Supervision of Autonomic Systems,” Int’l
Trans. Systems Science and Applications, vol. 2, no. 1, 2006,
pp. 105-110.

13. H.-G. Gross, I. Schieferdecker, and G. Din, “Model-Based
Built-In Tests,” Electronic Notes in Theoretical Computer
Science, vol. 111, 2005, pp. 161-182.

14. P. Baker et al., Model-Driven Testing: Using the UML Testing
Profile, Springer, 2007.

15. L. Frantzen, J. Tretmans, and T.A.C. Willemse, “A Symbolic
Framework for Model-Based Testing,” Formal Approaches
to Software Testing and Runtime Verification, LNCS 4262,
Springer, 2006, pp. 40-54.

16. A. Zeller, “Debugging Debugging: ACM Sigsoft Impact
Paper Award Keynote,” Proc. 7th Joint Meeting of the Eu-
ropean Software Eng. Conf. and the ACM SIGSOFT Symp.
Foundations of Software Eng. (ESEC-FSE 07), ACM Press,
2009, pp. 263-264.

17. J. Zander-Nowicka, X. Xiong, and I. Schieferdecker, “Sys-
tematic Test Data Generation for Embedded Software,”
Proc. Software Eng. Research and Practice (SERP 08), vol.
1, CSREA Press, 2008, pp. 164-170.

18. J. Grossmann, D.A. Serbanescu, and I. Schieferdecker,
“Testing Embedded Real Time Systems with TTCN-3,”
Proc. 2009 Int’l Conf. Software Testing Verification and
Validation (ICST 09), IEEE CS Press, 2009, pp. 81-90.

Gabor Karsai is a professor of electrical engineering and
computer science at Vanderbilt University and a senior
research scientist in its Institute for Software-Integrated
Systems. His research is in model-integrated computing.
Karsai received a PhD in electrical engineering from Van-
derbilt University. He’s a member of the IEEE Computer
Society. Contact him at gabor.karsai@vanderbilt.edu.

Fabio Massacci is a professor of computer security at the
University of Trento, Italy. His research interests are in se-
curity requirements engineering and security verification
for mobile systems. Massacci received a PhD in computer
science and engineering from Sapienza University of Rome,
Italy. He is a member of the ACM, IEEE, and ISACA. Contact
him at fabio.massaci@unitn.it.

Leon Osterweil is a professor of computer science at the
University of Massachusetts Amherst and codirector of its
Laboratory for Advanced Software Engineering Research
and the Electronic Enterprise Institute. His research centers
on software analysis and testing, software tool integration,
and software processes and process programming. Oster-
weil received a PhD in mathematics from the University of
Maryland. He is a fellow of the ACM. Contact him at ljo@
cs.umass.edu.

Ina Schieferdecker heads the Competence Center on
Modeling and Testing of System and Service Solutions
at Fraunhofer FOKUS, Berlin, and is also a professor of
design and testing of communication-based systems at
Technical University Berlin. Her research interests include
model-driven engineering, software quality assurance,
conformance, interoperability, and certification. Schief-
erdecker received a PhD in electrical engineering from
Technical University Berlin. She is a member of IEEE, the
ACM, the German Academy of Science and Engineering
(Acatech), Gesellschaft für Informatik, and ASQF. Contact
her at ina.schieferdecker@fokus.fraunhofer.de.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

{EssentialSet}

EssentialSet | Evolving Critical Systems

Evolving Software Architecture
Descriptions of Critical Systems

by Tom Mens, Jeff Magee, and Bernhard Rumpe

Computer, vol. 43, no. 5, May 2010, pp. 42–48
DOI bookmark: http://doi.ieeecomputersociety.org/10.1109/MC.2010.136

EssentialSet | Evolving Critical Systems

COMPUTER 42

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

providing architectural descriptions of software-intensive
systems to cope with their increasing complexity and to
mitigate the risks incurred in constructing and evolving
these systems. According to this standard,1 as Figure 1
shows, a system fulfills a particular mission in the environ-
ment it inhabits and has one or more stakeholders that have
concerns relative to the system and its mission. Concerns
are defined as “those interests that pertain to the system’s
development, its operation, or any other aspects that are
critical or otherwise important to one or more stakehold-
ers.” Runtime concerns include performance, reliability,
security, and distribution; development concerns focus on
maintenance—in particular, evolvability.

The software architecture deals with multiple views
of a system including both its functional and nonfunc-
tional aspects. A structural view looks at the system as a
set of components that interact via connectors. Complex-
ity is mastered by means of hierarchical decomposition;
a component can be composed from subcomponents
with the hierarchy’s leaf components representing coded
functionality. As the “Architecture Description Languages”
sidebar describes, the research community has proposed
numerous ADLs, some of which have found their way into
commercial practice.

An explicit architecture description is important but
not sufficient to manage the complexity of developing,
maintaining, and evolving a critical software-intensive

S
oftware-intensive systems, whether real-time
embedded systems or information-processing
systems, present critical concerns for stake-
holders. A system may be mission-critical for
a company, in that it could lose its competi-

tive advantage or even be unable to survive if the system
doesn’t function properly. A system may be resource-
critical in terms of time, personnel, hardware, or any other
crucial resource on which it might rely; unavailability or
malfunction of these resources could cause the system to
fail. A system may be critical in a more traditional sense—
having specific nonfunctional characteristics that must be
satisfied at all times. For example, financial systems are
security-critical, whereas nuclear power plants, medical
applications, and public transportation are safety-critical,
as human lives might be at stake.

Software architectures provide a sound basis for explic-
itly documenting these concerns. IEEE standard 1471-2000,
which has also become ISO/IEC 42010:2007, recommends

To manage the complexity of developing,
maintaining, and evolving a critical soft-
ware-intensive system, its architecture
description must be accurately and trace-
ably linked to its implementation.

Tom Mens, Université de Mons, Belgium

Jeff Magee, Imperial College London, UK

Bernhard Rumpe, RWTH Aachen University, Germany

EVOLVING
SOFTWARE
ARCHITECTURE
DESCRIPTIONS OF
CRITICAL SYSTEMS

EssentialSet | Evolving Critical Systems

Figure 1. Fragment of IEEE Std. 1471 conceptual model of
architectural description. A software-intensive system fulfills
a particular mission in the environment it inhabits and has
one or more stakeholders that have concerns relative to the
system and its mission.

Stakeholder

Architectural
description

Concern

1..*

1..*

1..*

1..*

Architecture

Rationale
provides

System

has an

described by
1

identifies

has

Mission
fulfills

1..*
Environment

has
1..*

influences

inhabits

43MAY 2010

system. The description must also be accurately and trace-
ably linked to the software’s implementation, so that any
change to the architecture is reflected directly in the im-
plementation, and vice versa. Otherwise, the architecture
description will become rapidly obsolete as the software
evolves to accommodate changes. The architecture
description must thus be an integral part of the software-
intensive system and its documentation.

WHY EVOLVE ARCHITECTURE DESCRIPTIONS?
Any software-intensive system is constantly subject to

software changes, usually driven by external stimuli from
the system environment over which the developers have
little or no control. These stimuli may be as diverse and
unforeseeable as technological changes, enhanced user

ADLs have emerged as formal languages to define and document
the software architecture of systems.1-4 They facilitate com-

munication between software architects and other stakeholders
and make it possible to express, verify, and impose properties upon
the software that will implement the architecture. In contrast to
programming languages, ADLs are usually declarative and describe
a system’s architecture as a set of components, connectors, and
configurations of these elements.

Researchers have developed numerous ADLs such as AADL
(Architecture Analysis and Design Language), Acme, COSA (Com-
ponent Object-based Software Architecture), Darwin, Rapide, and
Wright. Appropriate architecture-centric software development
tools have also been developed, including ArchStudio, Acme-
Studio, and SafArchie Studio.

Koala5 is one of the few ADLs to have found application in com-
mercial practice. Philips uses it to define the software architecture
for consumer electronic products. Koala is model-driven in that it
directly uses the architectural description to construct the soft-
ware loaded into products.

Figure A. Architectural description of the software for a TV set
using Koala. The components can be configurations of more
primitive components or they can be base-level components
with their implementations defined in C.

Figure A5 shows an example of the architectural description of
the software for a TV set using Koala. The components shown in
the figure can be configurations of more primitive components or
they can be base-level components with their implementations
defined in C. This ability to describe systems as hierarchical com-
positions of components is the key to managing complexity and is
a feature of practically all ADLs.

In the figure, the boxes with arrows represent interfaces
defined by sets of function calls. If the arrow points into a compo-
nent, then the component provides or implements that interface;
if it points out of the box, then the component requires access to
the interface. The lines or connectors represent connections
between required and provided interfaces and represent runtime
function call paths. Connectors in other ADLs represent more gen-
eral connector semantics that can encompass streams, events,
and message-passing protocols.

Koala restricts itself to a structural description of software
architecture. However, much of the power of ADLs and their
importance to critical systems arises from the ability to associate
behavioral, functional, and nonfunctional properties with compo-
nents and reason about the preservation of overall system
properties.

With the advent of Unified Modeling Language v. 2.x, more
modern ADL proposals are essentially profiles that extend UML 2.x
by means of stereotypes to extend the existing UML 2.x structural
elements with additional properties and constraints.

References
1. R.N. Taylor, N. Medvidovic, and E.M. Dashofy, Software

Architecture: Foundations, Theory, and Practice, Wiley, 2009.
2. L. Bass, P. Clements, and R. Kazman, Software Architecture

in Practice, 2nd ed., Addison-Wesley, 2003.
3. N. Medvidovic and R.N. Taylor, “A Classification and Com-

parison Framework for Software Architecture Description
Languages,” IEEE Trans. Software Eng., Jan. 2000, pp. 70-93.

4. M. Shaw and D. Garlan, Software Architecture: Perspec-
tives on an Emerging Discipline, Prentice Hall, 1996.

5. R. van Ommering et al., “The Koala Component Model for
Consumer Electronics Software,” Computer, Mar. 2000, pp.
78-85.

ARCHITECTURE DESCRIPTION LANGUAGES

II2c

CTunerDriver
ctun

ptun

ri2c

IInit

pini

ITuner

pif
pini CHipDriver

chip

pscr
pini

CHopDriver
chop

pcol

IIf IColor IScreen

CFrontEnd
cfre

pprg
pini

IProgram

ppic
pini CBackEnd

cbke

IPicture

rscrrtun rif rcol

CTvPlatform pprg ppic

slowfast
II2c

pini

ri2cri2c

m

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 44

models are often easier to evolve than programs. For
almost any modeling language, various techniques exist
to systematically modify the models to achieve certain
effects. For example, composite structure diagrams can
be transformed and refined4 in a semantic-preserving
way.

Many researchers have studied the formal foundations
of model transformation. One well-known formalism
used for this purpose is graph transformation, which
enables reasoning about the formal properties of model
transformations—in particular, how an architecture
evolves. For example, this approach can be used to verify
whether a given architectural transformation preserves
certain structural, behavioral, or other properties. This
is particularly useful in the context of architectural re-
structuring, which aims to improve the structure of an
architectural description while improving its behavioral
properties.

Using model transformation, and especially graph
transformation, to express and formalize the evolution
of architectural descriptions isn’t new. Daniel Le Métayer5

proposed such an approach more than a decade ago. More
recently, Michael Wermelinger and José Luiz Fiadeiro6 used
graph transformation theory as a formal foundation for
software architecture reconfiguration. Even more recently,
Lars Grunske7 formalized architectural refactorings as
graph transformations that can be applied automatically.
In a similar vein, Dalila Tamzalit and one of the authors8

used graph transformations to express architectural evolu-
tion patterns as a means to introduce architectural styles
as well as to verify whether a given architectural evolution
preserves the constraints imposed by an architectural
style. Automated support for this approach is currently
under development using the COSA ADL and associated
tools.

Another interesting approach to transformation-based
architectural evolution, though not directly relying on
graph transformation, is work by Olivier Barais and col-
leagues.2 Their TranSAT framework supports architectural
evolution based on ideas borrowed from aspect-oriented
software development. The idea is to encapsulate new
architectural concerns as architectural aspects and to use
an architectural-transformation language to weave these
aspects into the existing architecture description. This
approach makes it possible to analyze transformations
statically and incrementally to verify whether the result-
ing architecture description is structurally consistent—this
saves considerable time and effort compared to doing a
complete analysis of the resulting architecture description.
Examples of such architectural restructuring include the
transformation of a monolithic architecture into a dis-
tributed client-server architecture or into a three-tiered
architecture that clearly separates the user interface, busi-
ness logic, and data layer.

organizational structures or business processes, new leg-
islation, or changes in resources.

To cope with any of these issues, all software artifacts
produced and used by the software-intensive system
must evolve. Depending on the software artifacts’ type
and granularity, the impact and rate of change may differ.
Source-code artifacts need to be changed frequently—for
example, to fix bugs—but often have a local impact only.
Changes to the architecture occur less frequently but have
a global impact.

Evolving a software architecture by modifying its
description to accommodate change requests faces nu-
merous research challenges. In particular, the evolution
of an architectural description should typically preserve
its purpose and criticality concerns. There are two ways to
verify that such properties are preserved: by analyzing and
verifying the resulting architectural description after the
changes, or by analyzing the initial architectural descrip-
tion together with the “delta” or “increment” applied to it
to make the changes.

Current ADLs provide little support for architectural
evolution, leaving it to processes, tools, and techniques
outside the architecture description’s concern.2 Never-
theless, researchers agree that evolving the architecture
description is beneficial, particularly in the case of critical
systems, and in recent years have made promising gains.

MODEL-TRANSFORMATION-BASED
EVOLUTION

The model-driven-engineering community uses models
as artifacts to describe well-defined software aspects at a
higher abstraction level than source code. Model transfor-
mation is a well-established technique to modify and evolve
models.3 Researchers have developed various model-trans-
formation languages, some of which—such as ATL (ATLAS
Transformation Language)—are seeing widespread indus-
try adoption. Others are part of a standardization process,
such as QVT (Query/View/Transformation), the de facto
standard proposed by the Object Management Group to
accompany UML (Unified Modeling Language). Because an
architectural description can be seen as a software model,
it makes sense to apply model-transformation approaches
to architectural evolution.

Developers are applying the proven program-trans-
formation technique of refactoring to models and
specifications as well. Due to their semantic richness,

The evolution of an architectural
description should typically preserve
its purpose and criticality concerns.

EssentialSet | Evolving Critical Systems

45MAY 2010

models. It’s even unclear how state-, activity-, and flow-
based models of the same architecture complement one
another.

PRESERVING CRITICAL
BEHAVIORAL PROPERTIES

It’s essential to ensure that any evolutionary software
adaptation retains desired properties that have been mod-
eled, validated with stakeholders, or even formally proven
correct versus requirements and implementation. This is
even more important for critical systems, in which errors
are often introduced during badly managed evolutionary
steps. Making large architectural changes in one step is
especially problematic. After such a “big bang,” consid-
erable validation and modification must occur to adapt
behavioral models as well as any implementation. In con-
trast, a stepwise approach to evolution lets developers
manage change more effectively through small, incre-
mental transformations.

Transformations that refine or preserve behavior while
adapting the architectural description to new requirements
or technical needs are relatively complex, even in small
evolutionary steps. Tools are therefore necessary to assist
such transformations. Unfortunately, none of today’s tools
adequately preserve syntactical correctness and seman-
tics. Further, researchers have mainly applied them to
isolated modeling viewpoints and not to loosely coupled
heterogeneous views, which are needed to describe an
architecture’s structure and behavior.

Transformation-based evolution of behavioral models
is much harder to achieve than evolution of purely
structural models. Tools usually carry out structural
transformations rather efficiently. When behavior is in-
volved, however, undecidability problems pop up such as
semantic equivalence of logical preconditions. A simple
solution to these problems would be to review them by
hand; the most complex would be to feed them into an
interactive verifier and enforce their formal correctness
proof. This is why evolution techniques for behavior in

ARCHITECTURAL
COEVOLUTION

While in many disciplines archi-
tectural descriptions are primarily
concerned with structure, architec-
tural descriptions of software serve
as structural containers in which
the complex behavior resides. From
the end-user viewpoint, achieving
correct and reliable behavior and
functionality is the ultimate goal
of a critical software-intensive
system. The internal structure is
only relevant to the software ar-
chitects and developers who use it
to master the software complexity. To reconcile both
types of stakeholders, we need different views to rep-
resent the structural and behavioral descriptions of
architecture.

Behavioral descriptions are often modeled in a precise
formal form. Various modeling languages such as state-
machine diagrams, sequence and activity diagrams, Petri
nets, and temporal or other forms of logic are used to de-
scribe a system’s behavioral aspects. All these behavioral
languages either incorporate their own structural descrip-
tion or can be combined with a separate one expressed
using some ADL or modeling language.

Evolving architectural descriptions inevitably requires
the coevolution of different viewpoints: the structural
viewpoint, the behavioral viewpoint, and often many
other viewpoints as well. In addition, as Figure 2 shows,
the architecture must be synchronized with other ar-
tifacts produced during software development such as
system requirements, documentation, and, of course,
implementation.

While most modeling languages have transformation
techniques to evolve models in small, understandable
steps, keeping models synchronized remains a challenge.
Tool chains currently translate all models into a logic
language and feed that into a verifier, but this clumsy
technique fails to capture the modeling language’s se-
mantic richness and structure, and a modified model
often can’t be translated back into the original model.

Understanding how to transform structural de-
scriptions and accompanying behavioral models in a
synchronized, consistent way is critical to software de-
velopment. Even more important is the coevolution of
analysis or certification arguments, which can retain
already validated properties if not affected directly.
Proof-replay techniques for verifiers have had some
success in this regard. However, researchers don’t yet
grasp how heterogeneous modeling languages semanti-
cally fit together or how to consistently coevolve them.
This is especially true for structural ADLs and behavioral

Programming
language

Modeling
language

Software
implementation

Software
designBehavioral

view
Structural
view

Behavior
speci�cation
language

ADL

Architecture description

sync. sync.

Figure 2. Coevolution of architectural viewpoints, design, and implementation. The
architecture must be synchronized with other artifacts produced during software
development.

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 46

Designer dilemma
Unplanned evolutionary change introduces a dilemma

when designing built-in ADL language constructs to sup-
port change and extension. On one hand, constructs that
always result in structurally well-formed and type-cor-
rect systems would inevitably permit only a subset of all
possible valid system changes. On the other, constructs
that result in invalid systems could only be permissible
in an environment that comprehensively detects struc-
tural problems and type errors, especially with critical
systems. There is thus a need to combine the freedom
to perform incorrect changes with the ability to detect
these errors to achieve sufficient expressiveness for un-
planned changes. This comprehensive approach can
accommodate destructive change—deleting elements
from an architecture description—in addition to con-
structive change—adding elements to an architecture
description.

When defining architectural changes as a first-class
construct in an ADL, software architects should consider
the different requirements of organizations responsible
for system development, deployment, and modification.
Consider, for example, a common scenario in the domain
of enterprise resource planning software. A development
organization produces a software framework product used
by other organizations to build applications. To meet their
local development requirements, these organizations may
need to customize (modify and extend) the framework to
support their applications. The original framework will
evolve over time, so the organizations that use it must
apply their local changes to the framework before using
the evolved framework for their applications. In addition,
a third party might wish to use applications from more
than one framework customizer and thus needs to merge
changes from both these organizations and the original
framework provider.

Regarding an architecture description only as design
documentation leads to the coevolution problem shown
in Figure 2: keeping this documentation in synch with the
software implementation as the system evolves. A model-
driven-engineering approach ensures that an architecture
definition isn’t just a documentation artifact but a precise
model for constructing both initial implementations and
extensions to these implementations.

Example: Resemblance and replacement
Figure 3 illustrates two techniques, resemblance and

replacement, that can be used to extend UML 2.x to permit
the intrinsic definition of architectural evolution.10

Resemblance defines a new component as the differ-
ence in structure from one or more existing components.
It’s the delta—the set of additions, deletions, and replace-
ments—of the components’ elements applied to arrive at
the new definition. Component elements include

architecture descriptions will first arise only in certain
kinds of critical systems.

A less expensive alternative is to use automated tests
and invariants to iteratively check whether each evolution
step is carried out correctly. However, this raises another
problem: When evolving software architecture based on
architectural descriptions, how do you keep the architec-
ture consistent with the implementation?

One way to keep architectural artifacts consistent
during evolution is to trace information-flow dependen-
cies through them. Horizontal tracing aims to ensure
consistency between architectural descriptions at the
same stage of development, while vertical tracing aims

to maintain consistency between the stages of devel-
opment—for example, by aligning artifacts with code.
Informal tracing is difficult because dependencies are
easy to forget. Formal tracing techniques exist—for
example, to formally check source-code annotations.9

Explicitly adding evolution operators to the language helps
to alleviate this problem, as the original information is still
available and no trace is needed to recover dependencies.
The optimal solution would be to generate parts of the
code in such a form that it can be regenerated after each
evolutionary step; automated tests could then regressively
test system behavior.

ARCHITECTURAL CHANGE
AS A FIRST-CLASS CONSTRUCT

Current ADLs such as Koala don’t directly address
evolution, regarding it as extrinsic to architectural descrip-
tions. The alternative is to provide first-class structural
constructs to express and capture architectural change
during both initial development and subsequent evolution.
This necessitates dealing with unplanned modification, for
it’s impossible, whichever development process is adopted,
to foresee all possible future requirements for evolving a
system. While this approach may initially seem unusual,
some programming languages already contain explicit
constructs for system evolution. For example, subclass-
ing could be interpreted as a form of evolution of classes
where the “old” class taken from the library isn’t evolved
but adapted through the subclass only. However, subclass-
ing permits only conservative extension—adding elements
to but not removing them from a class.

It’s impossible, whichever
development process is adopted,
to foresee all possible future
requirements for evolving a system.

EssentialSet | Evolving Critical Systems

47MAY 2010

placement is the key to managing change in composite
hierarchical definitions because it enables substitution of
definitions at one level of the hierarchy without necessarily
affecting higher layers. For example, Figure 3c shows an
improved implementation of the Database component that
replaces the original Database when applied to the simple
database server system (Figure 3a) or the managed server
system (Figure 3b).

Resemblance allows elements to be deleted in forming
a new definition from existing ones, but it isn’t destruc-
tive editing in the traditional sense. Using resemblance to
replace a definition in a base model with a new definition
in an extension model doesn’t remove the old definition;
instead, it records the deletion in a delta. This approach
enables history tracing, the use of base models instead
of derivatives, and the resolution of conflicts when inde-
pendently evolved extensions are subsequently merged.

•	 parts—instances of
subcomponents,

•	 ports—instances of
interfaces,

•	 connectors—bindings
between ports, and

•	 attributes—component
parameters.

Resemblance can also
be applied to interfaces, in
which case the modified el-
ements are operations. If a
resemblance delta consists
only of additions, then when
applied to an interface, it de-
fines a proper subtype and
thus can safely replace the
original component.

Figure 3a depicts the ar-
chitecture description of a
simple database server that
has two internal compo-
nent parts: Database and
FrontEnd. Figure 3b shows
an evolution of this simple
server that has been ex-
tended using resemblance
to add managed access to
the data stored in the server.
ManagedServer resembles
Server, and the text note de-
fines the delta that results
from editing Server to arrive
at ManagedServer.

Resemblance’s many-to-
one relation permits the merging of multiple component
definitions that may have arisen due to, for example,
distributed development. Applying a sufficiently radi-
cal delta to a component may result in a new definition
that bears little or no resemblance to the component
definitions from which it’s derived. Tracing evolutionary
origins remains very important in many project contexts,
as both engineering and nature provide many examples
of systems that have dramatically evolved from their
original form.

Replacement globally substitutes the definition of one
component for another while preserving the original defi-
nition’s identity, thereby maintaining any relations that a
larger system has with this component. Combined with
resemblance, replacement permits the incremental evolu-
tion of a component definition without having to change
the composite definitions that use this component. Re-

Database

Idata

Iuser

FrontEnd

Idata

Server

db : Database fe : FrontEnd

d

dd

d u

uu

d ud
u

ManagedServer

db : Database

cn : Control

fe : FrontEndIdataIdata
 component ManagedServer
 resembles Server
 {

 ports: m;
 parts: cn: Control;
 delete-connectors: dd;
 connectors:
 rd joins r@cn to d@db;
 pd joins p@cn to d@fe;
 mm delegates-from m@cn to m;
 } Server

(from Base)

Control

Imanage

d

mr p

d u
u

m

uu

mm

pd

rd

r
m

p

component Database' implementation-class ImprovedDatabase
 resembles Database replaces Database
 { }

Database
(replaces

Base :: Database) d

Iuser

Iuser

Imanage

(a)

(c)

(b)

Server
(from Base)

Idata

Figure 3. Evolving a software architecture description using Evolve, a UML 2.x evolution tool
developed by Andrew McVeigh. (a) Architecture description of a simple database server.
(b) Resemblance: architecture description of managed database server. (c) Replacement:
replacing the Database component.

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 48

I
ncremental change is integral to both the initial
development and subsequent evolution of soft-
ware-intensive critical systems. Making evolution
intrinsic to architecture description is a principled
and manageable way to deal with unplanned

change. This intrinsic definition facilitates decentralized
evolution of software by multiple independent developers.
Unplanned extensions can be deployed to end users with
the same facility that plug-in extensions are currently
added to systems with planned extension points.

Acknowledgments
Tom Mens is supported by ARC project AUWB-08/12-UMH19,
“Model-Driven Software Evolution,” funded by the Ministère
de la Communauté française—Direction genérale de
l’Enseignement non obligatoire et de la Recherche scientifique,
and by the project TIC, cofunded by the European Regional
Development Fund (ERDF) and the Walloon Region (Belgium).

References
 1. IEEE Std. 1471-2000 and ISO/IEC 42010:2007, Recommended

Practice for Architectural Description of Software-Intensive
Systems, 2007.

 2. O. Barais et al., “Software Architecture Evolution,” Soft-
ware Evolution, T. Mens and S. Demeyer, eds., Springer,
2008, pp. 233-262.

 3. S. Sendall and W. Kozaczynski, “Model Transformation:
The Heart and Soul of Model-Driven Software Develop-
ment,” IEEE Software, vol. 20, no. 5, 2003, pp. 42-45.

 4. J. Philipps and B. Rumpe, “Refinement of Pipe-and-Filter
Architectures,” Proc. World Congress on Formal Methods
in the Development of Computing Systems (FM 99), LNCS
1708, Springer, 1999, pp. 96-115.

 5. D. Le Métayer, “Describing Software Architecture Styles
Using Graph Grammars,” IEEE Trans. Software Eng., vol.
24, no. 7, 1998, pp. 521-533.

 6. M. Wermelinger and J.L. Fiadeiro, “A Graph Transforma-
tion Approach to Software Architecture Reconfiguration,”
Science of Computer Programming, vol. 44, no. 2, 2002, pp.
133-155.

 7. L. Grunske, “Formalizing Architectural Refactorings as
Graph Transformation Systems,” Proc. 6th Int’l Conf. Soft-
ware Eng., Artificial Intelligence, Networking, and Parallel/
Distributed Computing and 1st ACIS Int’l Workshop Self-
Assembling Wireless Networks (SNPD/SAWN 05), IEEE CS
Press, 2005, pp. 324-329.

 8. D. Tamzalit and T. Mens, “Guiding Architectural Restruc-
turing through Architectural Styles,” Proc. 17th Ann. IEEE
Int’l Conf. and Workshop Eng. of Computer-Based Systems
(ECBS 10), IEEE Press, 2010, pp. 69-78.

 9. H. Krahn and B. Rumpe, “Towards Enabling Architectural
Refactorings through Source Code Annotations,” Proc. der
Modellierung 2006, Gesellschaft für Informatik, 2006, pp.
203-212.

 10. A. McVeigh, J. Kramer, and J. Magee, “Using Resemblance
to Support Component Reuse and Evolution,” Proc. 2006
Conf. Specification and Verification of Component-Based
Systems (SAVCBS 06), ACM Press, 2006, pp. 49-56.

Tom Mens is a professor and directs the Software Engineer-
ing Lab at the Institut d’Informatique, Faculty of Sciences,
Université de Mons, Belgium. His research interests are in
formal foundations and automated tool support for soft-
ware evolution. Mens received a PhD in sciences from Vrije
Universiteit Brussel, Belgium. He is a member of IEEE, the
IEEE Computer Society, the ACM, the European Research
Consortium for Informatics and Mathematics (ERCIM), and
the European Association of Software Science and Technol-
ogy (EASST). Contact him at tom.mens@umons.ac.be.

Jeff Magee is a professor, and heads the Department of
Computing, at Imperial College London, UK. His research
interests include software architecture, distributed sys-
tems, and mobile computing. Magee received a PhD in
computer science from Imperial College London. He is a
Chartered Fellow of the British Computer Society. Contact
him at j.magee@imperial.ac.uk.

Bernhard Rumpe is a professor of software engineering
in the Department of Computer Science at RWTH Aachen
University, Germany. His research interests include model-
ing, software architecture, and evolution. Rumpe received
an Habilitation in computer science from Munich University
of Technology (TUM). He is a member of the IEEE Computer
Society, the ACM, and Gesellschaft für Informatik (GI). Con-
tact him at rumpe@se-rwth.de.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

2 Free Sample Issues!
A $26 value

The magazine of computational tools
and methods for 21st century science.

http://cise.aip.org
www.computer.org/cise

Send an e-mail to jbebee@aip.org to
receive the two most recent issues of CiSE.
(Please include your mailing address.)

Recent Peer-Reviewed Topics:

Cloud Computing
Computational Astrophysics
Computational Nanoscience
Computational Engineering
Geographical Information Systems
New Directions
Petascale Computing
Reproducible Research
Software Engineering

MEMBERS
$47/year
for print & online

{EssentialSet}

EssentialSet | Evolving Critical Systems

Evolution in Relation to Risk and Trust
Management

by Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen

Computer, vol. 43, no. 5, May 2010, pp. 49–55
DOI bookmark: http://doi.ieeecomputersociety.org/10.1109/MC.2010.134

EssentialSet | Evolving Critical Systems

49MAY 2010Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE

COVER FE ATURECOVER FE ATURE

cation for emerging risks, but provides no guidelines. An
important risk assessment methodology like OCTAVE3

recommends reviewing risks and critical assets, but re-
sponds with silence when addressing how risk assessment
results should be updated. Moreover, most academic stud-
ies have focused on either maintenance4,5 or variants of
reassessment.6,7

Matt Blaze8 coined the term trust management in 1996,
calling it a systematic approach to managing security
policies, credentials, and trust relationships regarding au-
thorization and delegation of security-critical decisions.
Trust management has since been the subject of increased
attention and today provides for a diversity of approaches.
We view trust management as risk management with a
special focus on understanding the impact that subjective
trust relations within and between a target and its envi-
ronment have on the target’s factual risks. A methodology
for trust management suffers from the same weaknesses
we’ve identified for risk management and, further, brings
in additional challenges due to trust’s complexity and dy-
namic nature.

RISK MANAGEMENT
The recently published risk management standard ISO

310001,2 defines risk management as coordinated activities

W
hen improving an existing methodology
to account for evolution, we must realize
that methodological needs are strongly
situation dependent. We therefore dis-
tinguish among three main assessment

scenarios, each giving a particular perspective in relation
to risk and trust assessment: maintenance, before-after,
and continuous-evolution. For each perspective, we iden-
tify its main methodological challenges.

A risk picture typically focuses on a particular system
configuration at a particular point in time and is thus valid
only under the assumptions made when it was estab-
lished. However, the system and its environment, as well
as our knowledge, tend to evolve over time. State-of-the-
art methodologies within risk management in general,
and risk assessment in particular, aren’t well-equipped
to address evolution. A risk management standard such
as ISO 310001,2 prescribes change detection and identifi-

A methodology within risk and trust man-
agement in general, and risk and trust
assessment in particular, isn’t well equipped
to address trust issues in evolution.

Mass Soldal Lund and Bjørnar Solhaug, SINTEF ICT
Ketil Stølen, SINTEF ICT and University of Oslo

COVER FE ATURE

EVOLUTION
IN RELATION
TO RISK
AND TRUST
MANAGEMENT

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 50

to direct and control an organization’s risk, defined as a
combination of an event’s consequences and its associated
likelihood. The risk management process is defined as
the systematic application of management policies, pro-
cedures, and practices to the activities of communicating,
consulting, establishing context, and identifying, analyz-
ing, evaluating, treating, monitoring, and reviewing risk.
Figure 1, from ISO 31000, Risk Management: Principles and
Guidelines,1 shows the risk management process’s seven
subprocesses.

Seven subprocesses define risk management as a series
of coordinated activities, as follows:

•	 Establishing the context defines the external and inter-
nal parameters to be accounted for when managing
risk, and sets the scope and risk criteria for the risk
management policy.

•	 Risk identification finds, recognizes, and describes
risks.

•	 Risk analysis comprehends the nature of risk and de-
termines its level.

•	 Risk evaluation compares the results of risk analysis
with risk criteria to determine whether the risk and
its magnitude are acceptable or tolerable.

•	 Risk treatment is the process of modifying risk.
•	 Communication and consultation are the continual and

iterative processes an organization conducts to pro-
vide, share, or obtain information and to engage in
dialogue with stakeholders about risk management.

•	 Monitoring involves continually checking, supervis-
ing, and critically observing risk status to identify
changes from the performance level required or
expected, whereas review focuses on the activity
undertaken to determine the suitability, adequacy,
and effectiveness of the subject matter necessary to
achieve established objectives.

The monitor and review subprocess supposedly detects
“changes in the external and internal context, including
changes to risk criteria and the risk itself, which can re-
quire revision of risk treatments and priorities.”1 Hence,
ISO 31000 covers evolution, but we must still address evo-
lution in the more technical risk management activities,
particularly the three subprocesses that Figure 1 refers to
as risk assessment.

EVOLUTION IN RELATION
TO RISK ASSESSMENT

A risk assessment as traditionally performed focuses
on a particular target configuration at a particular point in
time, and is thus valid only under the assumptions made
when conducting the assessment. Because systems and
environments change, we need more powerful risk as-
sessment methodologies that can address changing and
evolving targets.

How we should handle change and evolution in relation
to risk assessment depends greatly on the context and kind
of changes we face:

•	 Do the changes result from maintenance or from
bigger, planned changes?

•	 Do the changes comprise a transition from one stable
target state to another, or do they reflect the con-
tinuous evolution of a target designed to change over
time?

•	 Do the changes occur in the target or in the target’s
environment?

The answers to such questions, as well as the risk assess-
ment’s practical setting, decide the methodological needs.

Maintenance perspective
We can describe the scenario corresponding to the

maintenance perspective in the following example: risk as-
sessors conducted an assessment three years ago and are
now requested by the same client to reassess and update
the risk picture to reflect changes to the target or environ-
ment, thereby restoring the assessment’s validity.

Figure 1. Risk management process. ISO 31000 defines risk
management as coordinated activities to direct and control
an organization’s risk, defined as a combination of an event’s
consequences and their associated likelihood.

EssentialSet | Evolving Critical Systems

51MAY 2010

The changes we address from the maintenance per-
spective are those that accumulate more or less unnoticed
over time. Such changes can be bug fixes and security
patches, an increase in network traffic, or an increase
in the number of attacks. In this case, the risk picture re-
mains more or less the same, but risk values might have
changed such that previously acceptable risks could now
be unacceptable, or vice versa. The objective then becomes
maintaining the previous risk assessment’s documentation
by conducting an update.

Figure 2 shows the principle by which risk assessors
conduct such a reassessment from the maintenance per-
spective. Assuming that we have descriptions of the old
target and the updated target available, including envi-
ronment descriptions, we start by identifying the changes
that have occurred. We then use the relevant changes as
input to the risk reassessment when deriving the current
risk picture.

From a methodological viewpoint, the main challenge
involves reusing the old risk assessment and avoiding a
restart from scratch. This demands identifying the updates
made to the target, updating the target description ac-
cordingly, and identifying which risks—and hence which
parts of the risk picture—the updates affect. Finally, we
update the risk picture without making changes to the
unaffected parts.

Before-after perspective
The motivating scenario for the before-after perspective

is risk assessors that are asked to predict the effect that
implementing changes in the target has on the risk picture.

The changes we address from the before-after perspec-
tive are planned and anticipated, but could still be radical.
Such changes can, for example, involve rolling out a new
system or making major organizational changes such as
implementing a merger agreement between two compa-
nies. We thus must understand the current risk picture, the
risks that might arise from the very process of change, and
the future risk picture.

Figure 3 shows the principle by which we conduct a risk
assessment from the before-after perspective. Assuming
we have descriptions of the current target and the change
process to bring it from the current to the future state, we
can devise a coherent risk picture for the future target and
the change process.

From a methodological viewpoint, the main challenges
involve obtaining and presenting a risk picture that un-
ambiguously describes the current and future risks and
the impact of the change process itself. This requires an
approach for presenting a target description that unam-
biguously characterizes the target both “as is” and “to be,”
specifying the process of change in sufficient detail, iden-
tifying current and future risks without doing double work,
identifying risks due to the change process.

Continuous-evolution perspective
The continuous-evolution perspective applies in the

scenario that risk assessors are requested to predict future
evolution of risk. It mandates that risk assessors conduct
an assessment that establishes a dynamic risk picture
reflecting the target’s expected evolution. The changes we

Old target

Old risks

Old risk
picture

Current target

Current risks

Current risk
picture

Updates

Risk assessor

Figure 2. Maintenance perspective. Assuming we have de-
scriptions of the old target and updated target available, in-
cluding environment descriptions, we start by identifying the
changes that have occurred in between, and then use the rel-
evant changes as input to the risk assessment when deriving
the current risk picture.

Current target

Current risks

Future target

Future risks

Planned changes

Risk assessor

Risks due to
change process

Risk
picture

Figure 3. The before-after perspective. Assuming that de-
scriptions of the current target and the change process bring
the target from the current to the future state, we can devise
a coherent risk picture for the future target and the change
process.

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 52

address from the continuous-evolution perspective are
predictable and gradual evolutions, described as functions
of time. These predictions can be based on well-founded
forecasts or planned developments. Examples include
the slow increase in the number of components working
in parallel, or gradually including more sites in a system.
Examples of well-founded forecasts can include the ex-
pected steady increase of end users, adversary attacks,
and annual turnover.

Figure 4 shows the principle by which we conduct a
risk assessment from the continuous-evolution perspec-
tive. Assuming that we have a description of the target
as a function of time, such that we can derive the target
at any point, we use this as input to the risk assessment.
Knowing how the target and its environment evolve, we
seek to craft a risk picture as a function of time that shows
how risks evolve.

From a methodological viewpoint, the main chal-
lenges are how to identify evolving risks and present
them in a dynamic risk picture. Obtaining this informa-
tion requires that we generalize the target description
such that it characterizes the evolution of the target and
its environment, identify and generalize the risks af-
fected by evolution, characterize the evolution of risks
in the dynamic risk picture, and relate the evolution of
risks to the target’s evolution as captured by the target
description.

TRUST MANAGEMENT
VS. RISK MANAGEMENT

Researchers agree that trustworthiness
is a more general issue than risk-related
factors such as dependability, security, and
safety. For example, although the underly-
ing system could be completely dependable
in the traditional sense, it might not be
trustworthy unless a suitable legal frame-
work exists on which the trustor can rely
should problems arise. Trust is nevertheless
inherently related to risk, and an important
part of managing trust is understanding the
risks involved in trust-based interaction.

Following the example of Diego Gam-
betta9 and Audun Jøsang and colleagues,10

we define trust as the subjective prob-
ability by which the trustor expects that
another entity—the trustee—performs a
given action on which the actor’s welfare
depends. By this definition, trust is a belief
the trustor holds about the trustee with
respect to a particular action as a probabil-
ity ranging from 0 (complete distrust) to 1
(complete trust). The trustor’s welfare refers
to its assets. If the trustee performs as ex-
pected, it might have a positive effect on the

trustor’s welfare; otherwise, it might have a negative effect.
The positive and negative outcomes correspond to op-

portunity and risk, respectively.11,12 Issues of trust arise
when deception or betrayal are possible, creating an in-
evitable relation between trust and risk. Likewise, trust
always relates to opportunity, which is risk’s counterpart.
In a trust-based transaction, the trustor might be willing
to accept the risk considering the opportunities involved.

We can calculate the risk level as a function R from
the consequence (loss) l of a harmful event and the prob-
ability p of its occurrence. We define the dual notion of
opportunity as the combination of the gain and likelihood
of a beneficial event, and give the level of opportunity as a
function O from the gain g of the beneficial event and the
probability p of its occurrence.

Assume that the trustor has trust level p in the
trustee performing an action with gain g for the trus-
tor and that deception has loss l. The trustor must
then weigh the opportunity O(g, p) and risk R(l, 1 - p)
against each other when deciding whether to engage
in the trust-based interaction. For example, assume a
situation in which the trustor considers lending $80
to the trustee, with the promise of being repaid the
amount with 50 percent interest, a gain of $40. The
trust level is 0.9. Using multiplication as the risk and
opportunity functions, the opportunity level is 0.9 ×
40 = 36, and the risk level is 0.1 × 80 = 8. Because the

Target at
time t0

EvolutionEvolution

Risk assessor

Risk
picture

Target at
time t1

Target at
time tN

Risk at
time t0

Risk at
time t1

Risk at
time tN

Figure 4. Continuous-evolution perspective. Given a description of the target
as a function of time that we can derive at any point, we use this information
to inform the risk assessment. Knowing how the target and its environment
will evolve, we can create a risk picture as a function of time that describes
how risks evolve.

EssentialSet | Evolving Critical Systems

53MAY 2010

opportunity outweighs the risk, the trustor should accept
the transaction.

Trust is just a belief held by the trustor, so the estimated
trust level might be wrong and so too might the subjec-
tively estimated levels of risk and opportunity. Trust is
important precisely for decisions that must or should be
made, even when confronting a lack of evidence about the
trustee’s future behavior. To precisely assess and evaluate
trust-based decisions, however, the trustor’s belief and the
basis for it must be considered.

We say that trust is well-founded if the trustor’s as-
sessment equals the trustee’s trustworthiness—that is,
the objective and factual probability by which the trustee
performs a given action on which the trustor’s welfare
depends. Only in the case of well-founded trust can the
trustor correctly estimate the involved risks and opportu-
nities. If trust is ill-founded, there’s a chance of misplacing
it. If the trust level is higher than the trustworthiness, the
transaction might be at greater risk than the trustor be-
lieves. On the other hand, if the trust level is lower, distrust
is misplaced, and the actual risk is lower than believed. To
continue the example, assume the trustor’s trustworthi-
ness with respect to the transaction in question is only
0.65. The factual opportunity level is then 0.65 × 40 =
26, and the factual risk level is 0.35 × 80 = 28, making
the risk higher than the opportunity.

Three focal points of trust management
In today’s information society, traditionally face-to-

face or human-to-human interactions are increasingly
conducted remotely over the Internet. Moreover, com-
puterized agents communicate and negotiate based on
policies resembling those of humans. Because trust often
is a precondition for such interactions to take place, trust
must be managed. The adequate or appropriate approach,
however, depends on the particular viewpoint and setting.
Specifically, we must distinguish among three different
focal points that might require less systematic manage-
ment—namely, trust management from the focal point of
the trustor, the trustee, and risk management.

From the trustor’s focal point, there’s a need to assess
the trustworthiness of other entities to make trust-based
decisions. From the trustee’s focal point, there’s a need to
increase and correctly represent the trustee’s trustworthi-
ness as well as its systems and services.10 The third focal
point, trust management in the setting of risk manage-
ment, is an important concern and involves understanding
the impact of trust on the target’s factual risk picture. The
target then includes actors that base some of their deci-
sions on trust, wherein the trust relations might be both
within the target and between the target and its environ-
ment. These actors could be human, but they might also
be organizations, businesses, or computerized entities
behaving on behalf of other actors.

When conducting trust management from the focal
point of risk management, we seek to direct and control
an organization with regard to the risk and opportunity
that stems from trust relations. To appropriately address
and assess trust in this setting, we must generalize the
risk management process depicted in Figure 1 by making
the corresponding trust assessment steps accompany the
identified risk assessment steps:

•	 Identification of trust relations focuses on existing and
potential trust relations that might serve as a basis
for trust-based decisions of actors within the target.

•	 Trust analysis estimates the trustee’s trustworthiness
in each such relation and estimates the potential for
gain and loss for each potential trust-based decision.
The trust analysis also includes an evaluation of the
extent to which trust is well-founded.

•	 Trust evaluation determines the risk and opportunity
levels associated with the trust relations and thereby
identifies favorable and unfavorable trust-based
decisions.

The final risk management step should also be general-
ized to include strategies that ensure the actor makes only
beneficial trust-based decisions in which opportunity out-
weighs risk. Such a strategy can, for example, be specified
and enforced as a trust policy. A strategy to ensure well-
founded trust should also be identified in case the trust
analysis reveals significant discrepancy between trust and
trustworthiness.

EVOLUTION IN RELATION
TO TRUST MANAGEMENT

We can classify evolution in relation to trust manage-
ment into the same three perspectives as evolution in
relation to risk management. It is, however, more chal-
lenging because we must consider that trust relations are
highly dynamic and can evolve as any other feature of the
target; moreover, we must contemplate that the change
itself can impact trust relations.

Common for any trust management in the risk manage-
ment setting is the dynamic and evolving nature of trust.
For a given trust relation, the trust level, and thus the trust-
based decision, might change over time, even for the same
trustor, trustee, and action, because the trustworthiness
evidence might change—for example, if the trustee acts

Common for any trust management
in the risk management setting is the
dynamic and evolving nature of trust.

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 54

deceitfully or makes a severe mistake, or if the trustee’s
reputation changes.

Maintenance perspective
The basis for a trust assessment from the maintenance

perspective lies in the previously conducted assessment,
which might need updating to reflect changes that can, for
instance, provide improved mechanisms for authentication
and nonrepudiation that should relax requirements on
the trustees’ trustworthiness. Or it could be an increase in
threats such as viruses and infected websites that should
result in a stricter trust policy. From the maintenance per-trust policy. From the maintenance per- the maintenance per-
spective, the trust-based decision points are basically the
same after the changes, but the previous assessments to
evaluate trust and identify appropriate trust policies might
no longer be valid. Changes in the level of potential gain and
loss associated with a trust relation can also be affected.

Starting from the old target description and the old risk
picture, the methodological challenges of the maintenance
perspective involve facilitating a systematic reassessment
of trust relations: for each change in the target or its en-
vironment, we must check whether any trust relation is
affected and, if so, determine the effect on the target’s
factual risk level.

Before-after perspective
In the before-after perspective, the changes are planned

or anticipated, so we can predict their effect on trust rela-
tions. Because the changes could be substantial, we might
not only need to reassess existing trust relations but also
consider that new relations can arise and old ones disap-
pear. Such a change can, for example, be caused by an
enterprise entering a joint venture with another, which
could involve the exchange of sensitive information such
as trade secrets and intellectual properties. The future
decisions of whether to reveal certain information might
then need to be based on trust relations.

The methodological challenges of the before-after per-
spective involve identifying the trust relations that persist
through the changes and will therefore still remain, how
to identify the trust relations that changed and therefore
must be reassessed, how to identify and reassess the new
trust relations from scratch, and how to identify the trust
relations that must be removed. The challenges further
involve assessing the impact of the change process itself
on trust relations.

Continuous-evolution perspective
The continuous-evolution perspective addresses pre-

dictable changes, which can also involve alterations to
trust relations and levels, as well as potential loss and
gain. A continuous evolution could, for example, be the
steady and predictable increase of viruses and infected
websites yielding a corresponding decrease in the trust-

worthiness of websites generally. The evolution toward
more sophisticated methods for cybercriminals to ex-
ploit sensitive information provides further proof that
the consequences of trust breaches could become more
severe over time. The methodological challenges of this
perspective involve being able to capture evolution with
respect to notions such as trust, subjective risk, and sub-
jective opportunity for the actors within the target and,
moreover, relating these to the evolution of the target’s
factual risk picture.

I
mproving risk assessment to take evolution into con-
sideration raises new, strongly situation-dependent,
methodological needs. Three particular situations
lead to three distinct assessment scenarios—mainte-
nance, before-after, and continuous-evolution—each

requiring distinctive procedures.
The notion of trust management has yet to be as well-

established as risk management. Still, the same scenarios
apply when evolution is taken into account in trust man-
agement, but with additional challenges originating from
trust’s highly dynamic nature.

 Acknowledgments
The work on which this article reports was partly funded by
the EU IST Framework 7 projects SecureChange and MASTER,
as well as the DIGIT-project (180052/S10) funded by the Re-
search Council of Norway.

References
1. ISO 31000, Risk Management: Principles and Guidelines, Int’l

Organization for Standardization, 2009.
2. ISO Guide 73, Risk Management: Vocabulary, Int’l Organiza-

tion for Standardization, 2009.
3. C.J. Alberts and A.J. Dorofee, OCTAVE Method Implementa-

tion Guide Version 2.0, Software Eng. Inst., Carnegie Mellon
Univ., June 2001.

4. S.A. Sherer, “Using Risk Analysis to Manage Software
Maintenance,” J. Software Maintenance, vol. 9, no. 6, 1997,
pp. 345-364.

5. M.S. Lund, F. den Braber, and K. Stølen, “Maintaining Re-
sults from Security Assessments,” Proc. 7th European Conf.
Software Maintenance and Reengineering (CSMR 03), IEEE
CS Press, 2003, pp. 341-350.

6. S. Goel and V. Chen, “Can Business Process Reengineering
Lead to Security Vulnerabilities: Analyzing the Reengi-
neered Process,” Int’l J. Production Economics, vol. 115, no.
1, 2008, pp. 104-112.

7. E. Lee, Y. Park, and J.G. Shin, “Large Engineering Proj-
ect Risk Management Using a Bayesian Belief Network,”
Expert Systems with Applications, vol. 36, no. 3, 2009, pp.
5880-5887.

8. M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust
Management,” Proc. IEEE Conf. Security and Privacy (SP 96),
IEEE CS Press, 1996, pp. 164-173.

EssentialSet | Evolving Critical Systems

55MAY 2010

C a l l f o r a r t i C l e s

Publication: January/February 2011

SubmiSSion deadline: 1 July 2010

Multicore processors, like Nehalem or Opteron, and many-
core processors, like Larrabee or GeForce, are becoming a de
facto standard for every new desktop PC. So, many devel-
opers will need to parallelize desktop applications, ranging
from browsers and business applications to media processors
and domain-specific applications. This is likely to result in
the largest rewrite of software in the history of the desktop.
To be successful, systematic engineering principles must be
applied to parallelize these applications and environments.

This special issue seeks contributions introducing
readers to multicore and manycore software engineer-
ing for desktop applications. It aims to present practi-
cal, relevant models, languages, and tools as well as ex-
emplary experiences in parallelizing applications for these
new desktop processors. The issue will also sketch out
current challenges and exciting research frontiers.

We solicit original, previously unpublished ar-
ticles on topics over the whole spectrum of software
engineering in the context of desktop microproces-
sors, including multicore, manycore, or both.

PoSSible toPicS include

 ■ How to make programming easier for average programmers
 ■ Programming models, language extensions, and runtimes

 ■ Design patterns, architectures, frameworks, and libraries
 ■ Software reengineering/refactoring
 ■ Software optimizations, performance tuning, and
auto-tuning

 ■ Testing, debugging, and verification
 ■ Development environments and tools
 ■ Surveys of software development tools
 ■ Case studies of consumer application scenarios
 ■ Industrial experience reports and case studies

QueStionS?
For more information about the focus,
contact the guest editors:

 ■ Victor Pankratius, University of Karlsruhe-KIT;
pankratius@acm.org

 ■ Wolfram Schulte, Microsoft Research;
schulte@microsoft.com

 ■ Kurt Keutzer, Univ. of California, Berkeley;
keutzer@eecs.berkeley.edu

For the full call for papers: www.computer.org/software/
cfp1 or www.multicore-systems.org/specialissue

For author guidelines:
 www.computer.org/software/author.htm

For submission details:
software@computer.org

Software for the Multiprocessor Desktop:
Applications, Environments, Platforms

9. D. Gambetta, “Can We Trust Trust?” Trust: Making and
Breaking Cooperative Relations, Dept. Sociology, Univ. of
Oxford, 2000, pp. 213-237.

10. A. Jøsang, C. Keser, and T. Dimitrakos, “Can We Manage
Trust?” iTrust 2005, LNCS 3477, Springer, 2005, pp. 93-107.

11. B. Solhaug, D. Elgesem, and K. Stølen, “Why Trust Is Not
Proportional to Risk,” Proc. 2nd Int’l Conf. Availability, Re-
liability, and Security (ARES 07), IEEE CS Press, 2007, pp.
11-18.

12. A. Refsdal, B. Solhaug, and K. Stølen, “A UML-Based
Method for the Development of Policies to Support Trust
Management,” Proc. 2nd Joint iTrust and PST Conf. Pri-
vacy, Trust Management and Security (IFIPTM 08), vol. 263,
Springer, 2008, pp. 33-49.

Mass Soldal Lund is a research scientist at SINTEF ICT.
His research focuses on formal and semiformal specifica-
tion techniques and languages, risk analysis and threat
modeling, and model-based testing. Lund received a PhD

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

in informatics from the University of Oslo. Contact him at
mass.s.lund@sintef.no.

Bjørnar Solhaug is a research scientist at SINTEF ICT. His
research focuses on methods and languages for the model-
ing and analysis of systems with respect to security, risk,
and trust. Solhaug received a PhD in information science
from the University of Bergen. Contact him at bjornar.
solhaug@sintef.no.

Ketil Stølen is a chief scientist at SINTEF ICT and a pro-
fessor at the University of Oslo. His research focuses on
model-based system development, security, risk assess-
ment, trust management, and formal methods. Stølen
received a PhD in computer science from the University of
Manchester. Contact him at ketil.stolen@sintef.no.

{EssentialSet}

EssentialSet | Evolving Critical Systems

Why Critical Systems Need Help
to Evolve

by Bernard Cohen and Philip Boxer

Computer, vol. 43, no. 5, May 2010, pp. 56–63
DOI bookmark: http://doi.ieeecomputersociety.org/10.1109/MC.2010.150

EssentialSet | Evolving Critical Systems

COMPUTER 56

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

The 2009 report confirmed earlier findings2 that for
every £1 (≈ $1.50) spent on orthotic services the NHS
saves £4 (≈ $6). With current expenditure on orthotic-
service provisioning estimated at £100 million (≈ $150
million), the NHS would save an estimated £400 million
(≈ $600 million). Nevertheless, the report found that,
because of inadequate funding, pilot sites that had en-
hanced service levels could not sustain them. A hospital
could implement recommendations only with specific
funding from its Primary Care Trust. Moreover, increased
awareness, not modeling, revealed the latent service
demand, suggesting that current procurement practice
is “too dependent on a commodity product procurement
model.”1

Clearly, the report viewed the current operating en-
vironment of orthotic service providers as a threat to
their ability to fulfill their mission. To improve patient
care and provide real value to the NHS, the report rec-
ommended establishing a locally commissioned service
based on clinical outcome. Such a solution is consistent
with the 2008 Darzi report, which recommended trans-
forming the NHS to a locally led, patient-centered, and
clinically driven organization.3

Realizing this vision is not without challenges.
Chief among them is the need to identify threats to
the system, understand user demand patterns, and
reach beyond classical engineering to adopt more ap-
propriate modeling techniques for these more complex
environments.

A
ccording to a 2009 report1 on orthotic services
in the UK, more than 1.2 million patients with
conditions from diabetes to neuromuscular
disorders rely on such services to enable them
to work and live independently. In 2005, the

report noted, it cost roughly £85 million (≈ US$128 million)
to provide orthotic services, and service demand had since
been increasing commensurately with the aging popula-
tion and the complexity of clinical conditions. Yet despite
this increase, there appeared to be no consensus on how
to relate the funding changes to the changing demand.

Given that early orthotic intervention improves lives
and saves money, an orthotic-service provisioning system
is certainly critical from the perspective of its patients.
To manage its evolution, providers must understand the
system’s place within the larger system of National Health
Services (NHS), and how it should respond to its patients’
needs.

Classical engineering fails to model all the
ways in which a critical sociotechnical sys-
tem fits into a larger system. A study of
orthotics clinics used projective analysis
to better understand the clinics’ role in a
healthcare system and to identify risks to
the clinics’ evolution.

Bernard Cohen, City University, London

Philip Boxer, Software Engineering Institute

WHY CRITICAL
SYSTEMS NEED
HELP TO EVOLVE

EssentialSet | Evolving Critical Systems

57MAY 2010

Interpret

Interpret

En
ta

ilm
en

t

Co
mmute

Postcondition Demand situation

Anticipate

Anticipate

Direct Compose

Se
m

an
tic

 do
m

ain
 as

 re
pe

rto
ire

of
co

m
po

sit
ion

al
ap

pr
oa

ch
es

Ex
pe

rie
nc

e o
f

pa
rti

al
sa

tis
fac

tio
n

En
ta

ilm
en

t

Experienced
situation

Experienced
circumstance

Satisfy?
Response

Stimulus

Supply-
side
ontology

Demand-
side
ontology

Precondition
Prerequisite

circumstance

needs are affected by both how it is organized and how
patients present their symptoms. Neither perspective can
be defined wholly independently of the other.

Heisenberg cut
Collaboration across multiple sociotechnical systems—a

system of systems (SoS)—raises the possibility that op-
erationally adequate systems collectively behave in ways
that violate their specifications. The sidebar “Defining a
System of Systems” explains this behavioral characteristic
in more detail. Even in a closed SoS, if analysts knew all
the relevant compositional approaches (middle of Figure 1)
but did not know the SoS’s behavioral domain, they would
experience the SoS as open because its design did not fully
determine its composition. Often, such systems engage in
autonomous composition under the influence of user inter-
actions, and their actual composite behavior differs from
that interpreted from the composite model. In these in-
stances, SoS behavior is considered emergent. An example
of such behavior is when features interact in telecommu-
nications systems.

The Heisenberg cut is the distinction between a system
for which users can and cannot predict system behavior
independently of their use of it. The limitation is whether
or not observers can define the nature of the demands
that a system is responding to independently of how the
supplying system relates to those demands. For an ecosys-
tem, it is impossible to make this assumption, since every
observer is always also a participant within the ecosystem:
Thus, what you get depends on how you use it.

THREATS TO A
SOCIOTECHNICAL SYSTEM

The threats facing any socio-
technical system within a larger
ecosystem such as the NHS extend
beyond those of the familiar op-
erational variety, where system
components fail to perform as ex-
pected, individually or collectively.
An orthotics service, for example,
uses a model of how it should op-
erate in providing orthoses to its
patients. This model, in turn, deter-
mines how it actually operates.

Integral to an accurate system
model is elaborating the distinction
between “should operate” and “ac-
tually operates.” A fully elaborated
model, such as that in Figure 1,
should reflect three kinds of distinc-
tions, or cuts: Cartesian, Heisenberg,
and endo-exo.

Cartesian cut
Like the scientific method, engineering techniques rely

on the successful construction of a modeling relation, as
shown in the left side of Figure 1. A valid scientific theory is a
formal system with an interpretation that maps the symbols
in that system to observable states and events in a natural
system in such a way that physical entailment (causality)
in the natural system commutes with logical entailment
(deduction) in the formal system. Engineers also rely on
the existence of components whose composition into sys-
tems they can analyze—and occasionally synthesize—using
the formal system’s calculus. Both science and engineering
make the simplifying assumption that the natural systems
they observe are closed, that is, immune to disturbance from
all stimuli that the operative model does not account for. In
other words, what you see is what you get.

However, unlike many systems, ecosystems are open
because it is not possible to identify all the state com-
ponents that some event does not alter. As such, these
systems are exposed to the well-known frame problem.4

The distinction between what is and what is not ac-
counted for by the observer’s knowledge is the observer’s
Cartesian cut. The limitation is whether or not observers
can assume that the system being modeled is closed. If the
system is within an ecosystem, this assumption is invalid
because what you see is not what you get.

In the context of orthotic services, the Cartesian cut
presented a mismatch between the model of the clinic
that defined its operational systems and the reality of its
interactions with its patients and funders. The processes
by which an orthotics service diagnoses particular patient

Figure 1. Fully elaborated modeling relation. A model that captures all the threats
to a sociotechnical system must consider both the demand- and supply-side
ontologies. Left: Construction of the modeling relation. Middle: Approaches used to
compose the system, which the user must orchestrate. Right: Service demands on
the basis of use context.

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 58

service demands from their formulation of how those ser-
vices affect their use context (right side of Figure 1).

Because these anticipatory systems are necessarily
open, modeling their clients’ needs also suffers from the
frame problem. However, the system can model a client’s
need as an organization of demand that constitutes a prag-
matics of use.6 That is, the client cannot know his needs
directly, but can know them indirectly because he has
experienced their effects.

The client’s endo-exo cut is the difference between what
the client can and cannot know directly about his needs.
This distinguishes the knowledge that is implicit in a socio-
technical system’s behavior (ontic knowledge) from what
those observing the system can know about it (epistemic
knowledge).7 For example, the behavior of a sociotechnical
system is a result of both how it endogenously chooses to
interact with its clients and how the design of its systems
exogenously constrains it. This cut is a consequence of
attributing agency to the sociotechnical system.

The limitation is whether or not service providers can
grasp the full nature of the underlying reality, in which
anticipatory processes are unfolding. In the context of
the ongoing interactions within an ecosystem, such a full
grasp is never possible: What is wanted is never exactly
what is asked for.

In the context of orthotics services, the endo-exo cut
reflects the failure of the larger healthcare ecosystem to
evolve compatibly with a model of the clinic concerned
with managing the lifelong development of a patient’s
condition.

MODELING A SOCIOTECHNICAL SYSTEM
Classical engineering is limited because it is impos-

sible to fully separate any sociotechnical system from its
context of use within an ecosystem. However, by enabling
the members of and stakeholders in the sociotechnical
system to analyze and project their participation experi-
ence, it is possible to understand how the sociotechnical
system is defined in terms of the Cartesian, Heisenberg,
and endo-exo cuts.

The techniques and tools of projective analysis facilitate
this understanding, and support members and stakehold-
ers in formulating and evaluating alternative evolutionary
strategies with respect to the larger ecosystem. In the or-
thotics case, we used PAN,8 a particular implementation
of projective analysis.

Modeling a client enterprise as a sociotechnical system
requires accepting that the observer’s perspective is always
exogenous to the system, which is why any modeling is
always a projection of the observer’s model of the system
in and of itself. For example, to work with the orthotics
clinics, we had to model the way the clinics worked from
the point of view of the clinicians and managers. Likewise,
to understand how doctors and specialists refer patients

In the context of orthotic services, the Heisenberg cut
was reflected in the underuse of orthoses relative to latent
demand. The clinics measured demand in terms of acute
episodes of care, rather than as multiple episodes of care
within the context of a patient’s chronic condition. An or-
thotics clinic is a practice that emerges from the composite
effects of all its different parts interacting with aspects of
its patients’ lives and conditions. No observer, not even a
participating observer, can wholly capture the nature of a
clinic’s practice. Any intervention must therefore take its
place within the ongoing operational nature of that prac-
tice. A clinic cannot somehow stop and redesign itself, even
though as a practice it can die.

Endo-exo cut
As expectations change, an individual system that

meets its specification might fail to satisfy its users’ de-
mands when the system becomes part of an SoS. Exposure
to these threats generates evolutionary pressures that re-
quire the system’s stakeholders to understand its place
within the SoS sufficiently to make strategic decisions
that can mitigate those risks. The composite functionality
that a collaborative SoS delivers is expressed as services
composed by actors that are anticipatory systems5 within
the larger ecosystem. These anticipatory systems define

A directed system of systems (SoS) is treated as if it were still a
single system, but its components have operational and mana-

gerial independence in the way they determine their respective
behaviors.1 A central authority predetermines the uses of these
component systems, which is typically a universal ontological com-
mitment as to what the system will be.

The integrated SoS is built and managed to fulfill specific pur-
poses, such as air defense, to which the component systems’
normal operational mode is subordinated. In practice, however,
an SoS requires collaboration among its component systems
concurrently with many other collaborations using the same sys-
tems. The agreed-upon central purpose thus depends on the way
the component systems support these concurrent collabora-
tions, which defer some ontological commitment to the time of
use. Consequently, any centrally determined ontological com-
mitment must underdetermine the component systems’ uses.
Central management organization cannot coerce the component
systems, which are autonomous to the extent that they volun-
tarily collaborate to fulfill agreed-upon purposes. The Internet,
for example, started out as directed, but its components can no
longer be centrally managed.

In a virtual SoS—for example, an economy—there is not even
a centrally agreed-upon purpose, so the component systems’
support for the concurrent collaborations must rely on relatively
invisible mechanisms (rules) to sustain the SoS.

Reference
 1. M.W. Maier, “Architecting Principles for Systems-of-Systems,”

Systems Eng., vol. 2, no. 1, 2009, pp. 267-284.

DEFINING A SYSTEM OF SYSTEMS

EssentialSet | Evolving Critical Systems

59MAY 2010

is targeting, and what is driving that context? For example,
this perspective might bring to light the characteristics
of the NHS and patient environment in which the clinic’s
practice is situated.

Identifying asymmetries
The stratified relationships among cuts also underline

three asymmetries that must be addressed if the client is
to manage its relationship to changes in its demand envi-
ronment. The what and how perspectives span the first
asymmetry: The technology does not define the product. The
ability to manage the technology generates economies of
scale in production. The manufacturing methods per se
should not define how clinics use orthoses to treat patients.

The how and for whom perspectives span a second
asymmetry: The business model does not define the cus-
tomer’s solution. The ability to manage the business model
generates economies of scope in the various markets that
can be served, but the ways in which the clinic organizes
its treatment process should not define what treatments it
can provide particular patients.

The for whom and why perspectives span the last asym-
metry: The patient’s demand does not define the experience
that the patient wants. The ability to manage the relation-
ship to demand generates economies of alignment in the
way the customer’s experience is supported. For example,
the demands of the symptoms in a single episode should
not define the larger multi-episode treatment strategy that
a patient might need throughout the condition’s life.

The first two asymmetries assume that providers can
define the demand environment to be independent of the
client enterprise’s behavior. The classical engineering dis-
ciplines are therefore well suited to mitigating the threats

to the clinics, we had to model the refer-
ral pathways used by clinicians in the
larger system.

Relationships among the cuts
The model must be able to account

for the three cuts that the system makes
in defining itself. As Figure 2 shows, the
relationships among these cuts are in
terms of a behavior domain and four
quadrants that layer the client’s rela-
tionship to demand: what, how, for
whom, and why. The behavior domain
comprises the kinds of behavior that
define the client system and its customer
interactions: for example, the clinical
orthotic practices and the contexts for
engaging in them.

What. This perspective reflects what
the clinic does, or the material nature of
the clinic’s work, as in what an orthotist
actually does. As such, it describes the clinic as a system
in terms of its realized behavior: what critical technologies
it has mastered and the source of its products or services
(constituent performances). The what perspective might
be an observation of the way the overall clinic functions
day to day, for example.

How. This perspective identifies the clinic’s character-
istics: What makes a clinic unique? What organizational
aspects define that clinic’s identity, such as how a clinic
organizes its work to be effective? This perspective
describes the clinic’s authorized models. It looks at the key
constituent performances it needs to construct the output
performances it provides to its patients (customers), such
as understanding how the clinic is actually organized.

For whom. This perspective clarifies whom the clinic is
serving and identifies the economics of this service, such
as the specific conditions the orthotics clinic is treating.
This perspective also describes the patients’ demands in
the clinical environment. How must the clinic custom-
ize and orchestrate its outputs to generate the composite
capabilities its patients need for their particular situations,
and how will the clinic synchronize these composite capa-
bilities with those situations? An example is seeking to
understand how clinics actually apply orthotic treatments
within the context of their patients’ daily lives.

Why. This perspective looks at what makes the clinic’s
identity-defining characteristics of value within the NHS,
particularly in relation to its patients. That is, what in the
NHS drives the clinic’s value, such as what is the larger
context of the patient’s life and condition that is giving
rise to the presenting symptoms? This perspective also
describes the environmental models that prompt demand.
What use context is generating the demand that the clinic

Supply Demand

Identity
realization

WHAT FOR WHOM

HOW WHY

Cartesian cut

Heisenberg cut

Endo-exo cut

Formal cause

Material cause E�cient cause

Final cause

Domain of
behavior

Figure 2. Modeling the Cartesian, Heisenberg, and endo-exo cuts and their
interrelationships partitions the behavior domain into four quadrants.
These four quadrants—what, how, for whom, and why—stratify the client’s
relationship to demand.

EssentialSet | Evolving Critical Systems

COMPUTER 60

dependency structure matrix (DSM) in Figure 4. This struc-
ture was the basis for the commodity product procurement
focus identified in the 2009 survey of orthotic services.1

Figure 5 illustrates the stratification matrix, which is more
complete and hence much more complex.

As the DSM and stratification matrix show, the com-
plexity of managing the third asymmetry—aligning the
ability to generate treatment with the patient’s particular
needs—overshadows the relative simplicity of the underly-
ing activities.

Using an extended form of Q-analysis,9 an analyst can
generate 3D histograms, or landscapes, from selected
submatrices of the stratification matrix. Figure 6 shows
a landscape for the orthotics services system showing the
relationships among major organizational components.

We also analyzed the roles of the clinics’ various data
platforms. Figure 7 shows the landscape for this analy-
sis. Although the platforms overlapped on appointment

that arise in these environments. The third asymmetry,
however, places the client enterprise explicitly within a
dynamic ecosystem. A client enterprise that fails to com-
prehend and accommodate itself to this will limit its
possible competitive behaviors, exposing itself to threats
created by the changing nature of demand inherent in an
ecosystem. It is these threats that a model based on all four
perspectives can locate and identify.

PROJECTIVE ANALYSIS OF
ORTHOTICS CLINICS

Figure 3 shows the model we elicited for orthotics ser-
vices using Visual PAN, an application of Microsoft Visio
with a customized stencil. The model is in the form of a
layered graph, with each layer corresponding to an aspect
of the clinic that several perspectives share.

This graph is effectively a heterogeneous binary relation
that PAN tools can manipulate algebraically to generate the

compon
ents

compo
nents

mfr

com
ponents
biz

uk agent

i
wareh
ouse

imports

i
wareho

using i stock

i distn

i distn
assets

d
manufa

cture

d
manuf
acturin

g
assets

m
stock

m
distribut

ion

m
distribu

tion

stock product
supplier

bespoke m
fr

b
manufa

cture

b
manuf
acturin

g

b
goods

in

b
breakin

g

b
distribu

tion

b stock

b stock
distribut

ion

adjustm
ent

podiatry dept

prim
ary care
trust

podi
atrist

podiatr
y

facilitie
s

podiatr
y

waiting
list

podiatry
appt

physiotherap
y dept

phys
iothe
rapis

t

physio
appt

physio
facilitie

s

physio
waiting

list

prim
ary care

group

gp
referral

gp
facilitie

s

gp

podiatr
y

outcom
e

physio
outcom

e

gp
referral
process

gp
referral
system

consult
ation

c
waiting

list

consult
ant

facilitie
s

cons
ultan

t

directorate

acute trust

c
diagno

sis

c
referral
system

c
referral
process

request
for

stabilis
ation

patie
nt

patient

patient

self
referral

waiting
room

patient
conditio

n

patient

patient

orthotic
s

waiting
list

orthotics dept

orth
otist

orthoti
st

facilitie
s

assess
ment
and

measur
ement

tech
nicia

n

o
goods

in

needs
adjusti

ng

adjuste
d stock

patient

adjustm
ent

�tting

bespok
e

footwe
ar

readym
ade

footwe
ar

repair
and

adaptati
on

repair
and

adaptat
ion

review
appt

o
bookin

g
system

o
referral

o
referral

patient

patient

patient
conditio

n

patient life

c
treatme

nt

surgica
l

outcom
e

surgica
l

outcom
e

through life
condition

orthopaedic
surgery

orthotic
treatment

orthotic
maintenance

physiotherapy

cons
ultan

t

consultant

podiatry

orthotist with
patient

consultant

doh

orthotist with
patientconsultant

cust
ome

r
liais
on

orthotist supply

patient
system

opas

pas data

gp data

patient life

patient
conditio

n

patient life

one o�

gp booking

orthopaedic
surgery

patient
record

patient
record

process

acute
condition

mobility
loss

quality of
life

patient

patient

patient

patient

direct
sale

surgical directorate

surgery

compo
nents

components

compon
ents

components

stock product

stock
product

stock product

orthotists

orthotic
s

orthotics

physio practice

physio
practice

physio practice

primary care
trust

primary care
trust

primary care
trust

primary care
trust

primary care
trust

podiatry practice

podiatry
practice

podiatry
practice

gp
diagno

sis

gp diagnosis

gp

gp

Figure 3. Model for orthotics services that combines the what, how, for whom, and why perspectives in the context of orthotic
services. The model is a layered graph, with each layer corresponding to the structure, function, hierarchy, synchronization,
information, and demand of the client enterprise, which in this case is the clinic. The colored regions represent clinical functions
(such as orthopedic surgery and outpatient services), patients’ conditions, and supplier services.

EssentialSet | Evolving Critical Systems

61MAY 2010

COVER FE ATURE

and patient details, all the clinical
data relevant to the particular patient
condition were held in separate, un-
related silos.

The projective analysis supported
several actions and interventions
that significantly improved orthotic
clinics’ ability to deliver quality care.
Not the least of these was the need
to support the alignment processes
themselves. According to the original
2004 survey of pathfinder clinics,2 no
clinic reported outputs by episode or
analyzed referral by condition. The
only reporting was on the clinic’s cost,
and “even this was generally poor.”
As a result, clinics had no shared ex-
perience reports or information base
to help them improve operations or
justify any investment. The report
also noted the lack of data related to
the chronic nature of the conditions
being treated. In addition to the inac-

Figure 4. Dependency structure matrix for the model in Figure 3. The DSM
captures only one of the aspects in the model, showing a relatively simple supply
structure with some feedback relationships (blue box) around the actual orthoses
fitting. The names of the rows and columns (not shown for simplicity) are the
processes derived from the fully elaborated model.

Figure 5. Stratification matrix for the model in Figure 3. This matrix is much more complete and thus much more complex than
the DSM in Figure 4. The red matrices correspond to the stratification, the mauve matrices show the stakeholder influence, and
the green matrices show how the DSM activities align to patient demands. The names of the rows and columns (not shown for
simplicity) are events and processes, respectively, both of which are derived from the fully elaborated model.

 Stakeholders
 Alignment

6,7 Why
4,5 For whom
2,3 Why
0,1 What

7

6

4

32

1

0

5

EssentialSet | Evolving Critical Systems

COVER FE ATURE

COMPUTER 62

cessibility of patient records, the report found holes in the
data on the conditions that defined an episode, on referral
pathways, and on episode characteristics.

T
he application of projective analysis to orthotics
clinics revealed the complexity of the alignment
processes needed to deliver effective care to
their patients. It also identified holes in the data
being collected—gaps that not only prevented

the clinics from acting in the most efficient and effective

way, but that also kept the larger health-
care system from attaching value to a
changed way of clinical operation. One
of the recommendations made, there-
fore, was to have the clinics deploy a
data platform to pull the missing infor-
mation as it was generated and make it
available for the stakeholders in their
subsequent decision making.2

However, given its other funding pri-
orities, the NHS rejected the proposed
transformation of the clinics on cost
grounds, despite the evidence that the
returns in efficiency and patient care
would be roughly four times the in-
vestment. Why should there be such
an obstacle to this critical system’s
evolution?

At first glance, the recommenda-
tion to deploy a data platform seems
similar to a recommendation for any
traditional information systems re-
quirements analysis. However, the
data platform was a by-product of our
analysis, not its primary objective.
From the perspective of the clinics’
role, deploying the data platform would
have seriously affected the NHS’s trust
structure and the centralized patient
record system that it was installing.
The obstacle was therefore at a much
higher level of understanding—that of
the ecosystem itself and its reluctance
to address the consequences of the
third asymmetry.

Requirements analysts have often re-
ported similar results, considering them
merely exceptions to an otherwise clas-
sical engineering analysis. We suggest
that, as they evolve, critical systems are
inevitably exposed to higher-order risks,
which classical engineering methods
fail to identify. Projective analysis offers
a more cost-effective alternative.

References
 1. J. Hutton and M. Hurry, “Orthotic Service in the NHS: Im-

proving Service Provision,” Proc. York Health Economics
Consortium, Univ. of York, July 2009; http://www.bapo.org/
docs/latest/york%20report.pdf.

 2. T. Flynn and P. Boxer, “Orthotic Pathfinder Report,” Busi-
ness Solutions Ltd., July 2004, pp. 60-75.

 3. Lord Darzi, “High Quality Care for All: NHS Next Stage
Review Final Report,” UK Dept. of Health, June 2008.

x-axis

y-axis

z-axis

Orthopedic consultant, patient,
and general practitioner

Diagnostic processes

Orthotic treatment process

Manufacture of
orthoses

Figure 6. Cross-sectional landscape. A landscape shows gaps in the relationships
between the major components of the organization being modeled, revealing
the risks to stakeholders. The component outputs (not shown for simplicity) are
ordered along the x-axis, the y-axis shows the complexity of alignment behind
each output, and the z-axis shows the extent of overlapping complexity between
outputs. The peaks represent areas of alignment that must themselves be
aligned by social processes within the ecosystem as a whole.

Orthotic clinic data

x-axis

Patient
administration

data

General
practitioner

data

y-axis

z-axis

Figure 7. Data platform landscape. The data platforms are ordered along the
x-axis, the y-axis shows the number of data elements synchronized by platform,
and the z-axis shows the number of platforms with this synchronization level.

EssentialSet | Evolving Critical Systems

63MAY 2010

•	

•	Computer, the flagship publication of the IEEE
Computer Society, publishes peer-reviewed
technical content that covers all aspects of
computer science, computer engineering,
technology, and applications.

•	Articles selected for publication in Computer
are edited to enhance readability for the nearly
100,000 computing professionals who receive
this monthly magazine.

•	Readers depend on Computer to provide current,
unbiased, thoroughly researched information on
the newest directions in computing technology.

To submit a manuscript for peer review,
see Computer’s author guidelines:

www.computer.org/computer/author.htm

Welcomes Your Contribution
Computer
magazine

looks ahead
to future

technologies

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

graduate diploma in numerical analysis and computer
programming, both from Glasgow University. He is a char-
tered engineer, a Fellow of the British Computer Society,
and a member of the Institution of Engineering and Tech-
nology. Contact him at b.cohen@city.ac.uk.

Philip Boxer is a senior member of the technical staff at
the Software Engineering Institute of Carnegie Mellon Uni-
versity. His research interests include the economics and
architectural and risk characteristics of the sociotechnical
ecosystems within ultra-large-scale systems. Boxer received
a BSc in electrical and electronic engineering from King’s
College in London University and an MSc in business ad-
ministration from the London Graduate School of Business
Studies. He is a member of IEEE, the International Council
on Systems Engineering, and the Institute of Business Con-
sulting. Contact him at pboxer@sei.cmu.edu.

 4. J. McCarthy and P. Hayes, “Some Philosophical Problems
from the Standpoint of Artificial Intelligence,” Machine In-
telligence, vol. 4, Edinburgh Univ. Press, 1969, pp. 463-502.

 5. R. Rosen, Life Itself, Columbia Univ. Press, 1985.
 6. C.S. Peirce, “How to Make Our Ideas Clear,” Popular Science

Monthly, Jan. 1878; http://www.peirce.org/writings/p119.
html.

 7. H. Atmanspacher, “Exophysics, Endophysics, and Beyond,”
Int’l J. Computing Anticipatory Systems, vol. 2, 1998, pp.
105-114.

 8. W. Anderson and P. Boxer, “Modeling and Analysis of In-
teroperability Risk in Systems of Systems Environments,”
CrossTalk, Nov. 2008; http://www.stsc.hill.af.mil/crossTalk
/2008/11/0811AndersonBoxer.html.

 9. R.H. Atkin, “The Methodology of Q-Analysis: How to Study
Corporations by Using Concepts of Connectivity,” Manage-
ment Decision, vol. 18, no. 7, 1993, pp. 380-390.

Bernard Cohen is an honorary visiting professor in the
School of Informatics at City University, London. His re-
search interests span the gaps between programming
practices, formal computer science, and human agency.
Cohen received a BSc in natural philosophy and a post-

{EssentialSet}

EssentialSet | Evolving Critical Systems

Simplicity as a Driver for Agile Innovation

by Tiziana Margaria and Bernhard Steffen

Computer, vol. 43, no. 6, June 2010, pp. 90–92
DOI bookmark: http://doi.ieeecomputersociety.org/10.1109/MC.2010.177

EssentialSet | Evolving Critical Systems

COMPUTER 90

SOF T WARE TECHNOLOGIES

Simplicity as a Driver
for Agile Innovation

L ooking at software system
production and use today,
we can easily compare
the industry’s current life

cycle to that experienced by the auto-
mobile industry 80 years ago. The
following statement, attributed to
Gottlieb Daimler, characterizes car-
makers’ expectations at that time:
“The market for automobiles will
never grow beyond one million cars,
for a very simple reason: Who would
educate all those chauffeurs?”

This skepticism is understandable—
back then, cars were handcrafted and
cost more than a house. At the time,
they were technically amazing—they
could go up to 100 kph—but they had
a hefty downside—the mean distance
between flat tires averaged 30 km
thanks to nail damage from horses
and carts.

Not surprisingly, the number
of extra tires constituted a status
symbol: two full wheels were normal,
with some cars carrying up to eight
extra wheels to weather longer trips.
But those who could afford a car were
neither willing to change tires nor
eager to maintain the engine, making
well-trained chauffeurs an indispens-
able commodity in the 1920s.

So it goes with software. Despite
the promises and effort, working

with software products still offers
a comparable adventure, one that
rarely proceeds as expected. Dif-
ficulties with deployment and use
lead to enormous system, organiza-
tional, and personal performance
losses, not only at first deployment
but even more so when we factor in
the inevitable upgrades, migrations,
and version changes.

THE PRICE FOR THE PACE
Millions of users suffer when stan-

dard software with a large market
share evolves. Maybe it undergoes a
radical redesign of the graphical user
interface (GUI) or offers a new genera-
tion of tools not readily compatible
with previous versions. Users must
then desperately search for previ-
ously well-understood functionality,
spending hours or even days bring-
ing perfectly designed documents to a
satisfactory state within this changed
technical environment.

This frustrating catch-up phase
causes an enormous productivity loss
that can force customers to shy away
from updates and migrations, sticking
instead with old and even outdated
or discontinued products or versions.
In many situations, customers fear
any kind of innovation involving IT
because they immediately associate

a change with enormous disruptions
and long periods of instability. With
technology-driven innovations, this
fear is justified thanks to the new
technologies themselves. However,
even small and technically simple
adaptations to a business process
typically require a major IT project,
with all its involved risks.

Thus, decision makers act con-
servatively, preferring patches and
exchanging functionality only when
it’s absolutely necessary. Even the
automobile industry fails when it
comes to IT adoption and, particu-
larly, IT agility. Much of a car’s control
software runs on specific hardware,
which limits the software’s applica-
bility, especially after the hardware
becomes obsolete—the software can’t
be ported elsewhere, meaning the
manufacturer is more or less stuck
with that hardware.

It takes engineers years to inno-
vate, which the product life cycle then
outlives by factors beyond that of the
electronics and software within. The
central problem is the IT lock-in at
design time: decisions on which tech-
nology to use and long-term deals
with the manufacturers are frozen
before production starts and often
last beyond the facelifts that periodi-
cally refresh these products.

 Tiziana Margaria, Potsdam University

 Bernhard Steffen, TU Dortmund University

Software and hardware vendors long avoided interoperation
for fear of opting out of their own product lines. Yet decisive
change came to the automobile industry from a holistic
evolution and maturation on many fronts.

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

EssentialSet | Evolving Critical Systems

Even pure software-based
IT is often caught in the
platform lock-in trap.

91JUNE 2010

In the aerospace industry, this life-
time mismatch is even more evident:
it takes decades to plan and design
a mission, which leaves the IT used
in the field in a typically decades-old
state. IT innovation is the fastest we
observe, and it systematically out-
paces the life cycle of the products
built using it. Inevitably, the products’
life spans shorten to those of the IT
they embody, as in consumer elec-
tronics, but this is unacceptable for
expensive products.

Today, we have a similar situation
in IT: singularly taken, the technolo-
gies and products are well-designed
and innovative, but aren’t made for
working together and can’t evolve
independently. Consequently, we
work with systems whose stability
isn’t proven and in which we can
thus pose only limited trust. Once a
bearable situation is achieved, and a
constellation works, we tend to stick
to it, bending the business and pro-
cedures to fit the working system,
then running it until support is dis-
continued, if then. This shows that
even pure software-based IT is often
caught in the platform lock-in trap:
business needs too often outpace
the life cycle of the IT platforms that
steer a company’s organization and
production.

STATES OF THE ART
Various factors contributed to

our current state of the art. Some
are rooted in the business models of
major software and hardware ven-
dors, who long avoided interoperation
for fear the consequences of opting
out of their own product lines would
be dire. The frantic pace of technology
provides its own chaos: before a cer-
tain technology reaches maturity and
can repay the enormous investments
for its development and production, a
newer option attracts attention with
novelty and fresh promises.

Decisive change came to the auto-
mobile industry not from the isolated
improvement of single elements but

from a holistic evolution and matu-
ration on many fronts, with the
interplay of numerous factors:

•	 Better, more robust compo-
nents. The modern car platform
approach builds on compara-
tively few well-engineered
individual components, such as
the tires, motor, and the chassis.

•	 Better streets. Today, we hardly
need worry about flat tires.

•	 Better driving comfort. Cars
run smoothly, reliably, and
safely, even if maltreated. User
orientation has made a huge dif-
ference: drivers don’t need to be
mechanics.

•	 Better production processes.
Modern construction supports
cars tailored to their customers,
even if all are built on platforms.
Essentially, no two delivered cars
are identical, but all are bound
to only a few well-developed
platforms.

•	 Better maintenance and support.
Drivers have access to support
worldwide, which can even
include home transportation.

These modern developments have
a straightforward match to the situ-
ation in IT, while also revealing the
weaknesses of today’s IT industry:

•	 Better, more robust compo-
nents. Today’s components are
typically too complicated and
fragile, and therefore are difficult
to integrate in larger contexts.
Service orientation seems to be
a potentially strong step in the
right direction, but it must be
combined with a clear policy.

•	 Better connection and interop-

eration. We still lack seamless
connection and integration, with
numerous mismatches at the
protocol, interface, or behavioral
level. Meanwhile, the intended
semantics and accompanying
security provide an everlasting
concern and a hot research topic.

•	 Better user comfort. Experts
might know various specifically
optimized solutions, but normal
users find none. Even getting a
modern phone to simply make
a call can be rather frustrating,
with many perceived extra steps
and commands.

•	 Better production processes.
Application development and
quality assurance should be
directly steered by user require-
ments, controlled via user
experience, and continuously
subject to modification during
development.

•	 Better maintenance and sup-
port. Established scenarios and
often-used functionality should
continue to work, while support
should be immediate and inte-
grated into the normal workflow.

The transition to overcoming these
weaknesses will depend on adopt-
ing economical principles that favor
dimensions of maturity and simplic-
ity over sheer novelty. In our analogy,
Formula One car racing is an attrac-
tive platform for high-end research,
but is unsuited for the needs and
requirements of mass driving due to
different skills, costs, and traffic con-
ditions. Taking ideas and results from
the high-end and specialized labora-
tory product requires diverse and
extensive research to succeed. Trans-
ferred to the IT domain, this kind of
research spans several dimensions:

•	 Human-computer interaction has
led to GUIs that provide an intui-
tive user interface.

•	 Domain modeling and seman-
tic technologies can establish a

EssentialSet | Evolving Critical Systems

COMPUTER 92

SOF T WARE TECHNOLOGIES

success and new market creation.
Most often, technology-driven

innovation accompanies risk caused
by the new technologies themselves.
Innovations rooted in the business
purpose, such as the service to the
user or customer, have a much higher
chance of success because user-level
advantages are easier to commu-
nicate in the market, especially if
detached from technological risks.

Improved levels of maturity
can enable a new culture of
innovation on the application

side. Once we overcome the fear of
change, true agility will guide the
application experts, leading to new
business models and new markets.
History shows that with the availabil-
ity of reliable cars, totally new forms
of transportation and business arose.

For the software industry, matu-
rity could revolutionize software’s
mass construction and mass custom-
ization far beyond our experience in
the automotive industry. Theoreti-
cally, we can easily “change wheels
while driving” and decompose and
reassemble the entire car or bring
new passengers aboard at the speed
of light without being bound to spe-
cific hardware.

From a higher perspective, draw-
ing adequate lines here can be
considered a distinguishing trait for
this new line of research and play a
central role in the evolution of our
economy and society.

Tiziana Margaria	 is	 chair	 of	 ser-
vice	and	software	engineering	at	the	
Institute	 of	 Informatics,	 Potsdam	
University,	Germany.	Contact	her	at	
margaria@cs.uni-potsdam.de.

Bernhard Steffen	is	chair	of	program-
ming	systems	in	the	Department	of	
Computer	 Science,	 TU	 Dortmund	
University,	Germany.	Contact	him	at	
steffen@cs.tu-dortmund.de.

reliably create complex solutions.
Developers might argue that there

is no universal approach, but several
domain-, purpose-, and profile-spe-
cific approaches within their scope are
possible that capture the vastness of
today’s programming problems much
more simply, reliably, and economi-
cally than most people think. This
approach trades generality, which
must be complex to accommodate
diverse and sometimes antagonistic
needs, with simplicity.

Companies such as Apple have
successfully adopted simplicity as a
fundamental design principle—for
example, insights that simplify its
users’ lives concern both the handling
of its products and their maintenance
and robustness. Users adopted these
innovations enthusiastically and pay
a premium price for this “IT simply
works” experience. Similarly, Win-
dows 7 attempts to overcome the
tendency to provide cutting-edge and
increasingly complicated technology
in favor of a more user-driven philoso-
phy. Combining extensive interviews
and agile methods in its development
accelerated this paradigm shift.

While promising beginnings,
these initiatives fall short of making
mature technologies that simply work
a widespread reality. We need exten-
sive research and a clear engineering
approach tailored to simplicity.

IT SIMPLY WORKS
The potential of a slogan like “IT

simply works” offers vast opportu-
nities unrestrained by the physical
limitations of classical engineering.
In principle, every software compo-
nent can be exchanged at any time,
almost everywhere, without leaving
any waste—an ideal situation for
truly component-based engineering.

Leveraging this potential would
economically surpass the impact of
producing new products based on
leading-edge IT. Studies of product
innovation show that technologi-
cal leadership corresponds only to
a relatively small fraction of market

user-level understanding of the
involved entities.

•	 Cloud computing and other forms
of platform virtualization pro-
vide stable user-level access to
functionality.

•	 Service orientation and process
technologies offer easy interactive
control at the user process level.

•	 Integrated product line man-
agement and quality assurance
requires validation and moni-
toring to guarantee correctness
criteria at design, orchestration,
and runtime.

•	 Rule-based control helps develop-
ers react flexibly to unforeseen
situations.

•	 Security and safety affect not
only business-critical applica-
tions but also technologies for
establishing a high level of fault
tolerance, be it at the infrastruc-
tural, software, or human level.

•	 Major application domains, such
as business, biology, or medi-
cine, keep the focus on constant
awareness of the primary issue—
user requirements.

The contributions of these individ-
ual research areas must be combined
holistically to successfully control,
adapt, and evolve systems composed
of mature components.

THE PRICE FOR MATURITY
Achieving a sufficient level of matu-

rity across components, connections,
interoperation, and evolution is a com-
plex and highly interdisciplinary task
that requires technological knowledge
and deep domain modeling expertise.

In this setting, standard inves-
t igat ion topics in IT such as
complex architectural design and
computational complexity are only of
secondary and ancillary importance.
The key to success is application of
the “less is more” principle, with the
goal of treating simple things simply,
by a correspondingly simple design
reminiscent of Lego blocks: primitive
and well-defined blocks combine to

Editor: Mike Hinchey, Lero—The Irish
Software Engineering Research Centre;
mike.hinchey@lero.ie

EssentialSet | Evolving Critical Systems

{EssentialSet}

RECOMMENDED RESOURCES

0. M. Hinchey and L. Coyle, Evolving Critical Sys-
tems, tech. report Lero-TR-2009-00, Lero —the Irish
Software Engineering Research Centre, July 2009 (and
revisions), http://www.lero.ie/ecs/whitepaper.

A manifesto for an ECS research agenda, regu-
larly updated, and on which some of this material
is based.

1. E.B. Swanson, “The dimensions of maintenance,”
Proceedings of the 2nd International Conference on
Software Engineering (ICSE 1976), IEEE Computer
Society Press, 1976, pp 492–497.

A classic paper that describes the various types of
software maintenance, classifying them as correc-
tive, perfective, or adaptive.

2. V. Rajlich and K.H. Bennett, “A Staged Model for
the Software Life Cycle,” Computer, vol. 33, no. 7, July
2000, pp. 66–71.

Presents a staged life cycle model highlighting the
maturity of a software system as being an essen-
tial consideration when planning change.

3. P. Naur and B. Randell, eds., Software Engineer-
ing: Report of a conference sponsored by the NATO
Science Committee, Garmisch, Germany, 7–11 Oct.
1968, Scientific Affairs Division, NATO, Brussels,
1968.

A now-famous account of a NATO workshop
where the term “software engineering” is believed
to have been first coined. The report places much
emphasis on both evolution and criticality of
software.

4. M.M. Lehman, “Laws of software evolution revis-
ited,” Proceedings of the 5th European Workshop on
Software Process Technology (EWSPT 1996), Springer-
Verlag, 1996, pp. 108–124.

A revised version of Lehman’s now-famous “Laws
of Software Evolution,” which considers the laws’
relevance and adds additional laws, making it the
first complete description.

5. J. Buckley, T. Mens, M. Zenger, A. Rashid, and G.
Kniesel, “Towards a taxonomy of software change,”
Journal of Software Maintenance and Evolution, vol.
17, no. 5, Sep. 2005, pp. 309–332.

Provides a taxonomy of different reasons for and
approaches to evolving software.

6. M.R. Lyu, ed., Handbook of Software Reliability
and System Reliability, McGraw-Hill, 1996.

An excellent and much-cited reference on critical
systems and software reliability.

7. N.G. Leveson, “Software safety: why, what, and
how,” ACM Computing Surveys, vol. 18, no. 2, June
1986, pp. 125–163.

A comprehensive overview of software safety,
with particular reference to the issues that dis-
tinguish safety in software from safety in other
domains.

http://www.lero.ie/ecs/whitepaper

{EssentialSet}

EssentialSet | Evolving Critical Systems

ABOUT THE EDITORS

Mike Hinchey is Director of Lero—the Irish Software Engi-
neering Research Centre and Professor of Software Engi-

neering at University of Limerick, Ireland. Prior to joining Lero,
Hinchey was Director of the NASA Software Engineering Labo-
ratory; he continues to serve as a NASA Expert. In 2009 he was
awarded NASA’s Kerley Award as Innovator of the Year.

Hinchey holds a B.Sc. in Computer Systems from University of
Limerick, an M.Sc. in Computation from University of Oxford,
and a PhD in Computer Science from University of Cambridge.
The author/editor of more than 15 books and over 200 articles
on various aspects of Software Engineering, Hinchey is Chair of
the IFIP Technical Assembly and Chair of IFIP Technical Com-
mittee 1 (Foundations of Computer Science), Chair of the IEEE
Technical Committee on Complexity in Computing, as well as
Editor-in-Chief of Innovations in Systems and Software Engineering: a NASA Journal (Springer)
and AIAA’s Journal of Aerospace Computing, Information, and Communication. Contact him at
mike.hinchey@lero.ie.

Lorcan Coyle is a research fellow with Lero—the Irish Soft-
ware Engineering Research Centre at University of Limerick,

Ireland. Prior to joining Lero, Coyle was a postdoctoral research-
er with the Systems Research Group in University College Dublin,
Ireland.

Coyle holds a Bachelor’s Engineering degree and a PhD in Com-
puter Science from Trinity College Dublin. He is a member of the
Irish Computer Society and Engineers Ireland. He has chaired
the 20th Irish Conference on Artificial Intelligence and Cognitive
Science. Coyle’s research interests include Software Engineering,
Autonomic Computing, Context-Aware Systems, Pervasive and
Ubiquitous Computing, and Machine Learning. He has authored
more than fifty publications at various fora, including Computer, PerCom, Knowledge Engineer-
ing Review, ICPS, EuroSSC, IUI, and CACM. Contact him at lorcan.coyle@lero.ie.

mailto:mike.hinchey@lero.ie
mailto:lorcan.coyle@lero.ie

{EssentialSet}

EssentialSet | Evolving Critical Systems

ABOUT THE EDITORS

Bashar Nuseibeh is a Professor of Computing at The Open
University (Director of Research, 2002-2008) and a Professor

of Software Engineering and Chief Scientist at Lero—the Irish
Software Engineering Research Centre. His research interests are
in software requirements and design, security and privacy, pro-
cess modelling and technology, and technology transfer.

Nuseibeh has consulted widely with industry, working with
organizations such as the UK National Air Traffic Services
(NATS), Texas Instruments, Praxis Critical Systems, Philips
Research Labs, and NASA. His work included successful analysis
of software requirements of the International Space Station at
NASA, analysis of aircraft conflict alert and security analysis of
new technologies at NATS, and feature evolution analysis of the
SPARC compiler at Praxis. He currently serves as Editor-in-Chief,
IEEE Transactions on Software Engineering. Contact him at B.Nuseibeh@open.ac.uk.

José Fiadeiro is Professor of Software Science and Engineering
and Head of the Department of Computer Science at the Uni-

versity of Leicester, United Kingdom. He did his undergraduate
degree in Mathematics at the University of Lisbon (Faculty of Sci-
ence), after which he moved to the Technical University of Lisbon
(Department of Mathematics, Faculty of Engineering), where he
studied for a PhD under the supervision of Amilcar Sernadas.
He was awarded a doctorate in 1989 and then spent three years
doing research at Imperial College London with a grant from the
European Commission. He became Associate Professor in Com-
puter Science at the Technical University of Lisbon in 1992 and
moved to the University of Lisbon (Department of Informatics,
Faculty of Science) in 1993. Before he joined Leicester in 2002, he
held visiting research positions at Imperial College, King’s Col-
lege London, PUC–Rio de Janeiro, and the SRI International. He became Head of Department
at Leicester in August 2006 and is also a Fellow of the British Computer Society. Contact him at
jose@mcs.le.ac.uk.

mailto:B.Nuseibeh@open.ac.uk
mailto:jose@mcs.le.ac.uk

	Title Page
	Table of Contents
	Introduction
	Guest Editors’ Introduction: Evolving Critical Systems

	Evolving Embedded Systems
	Evolving Software Architecture Descriptions of Critical Systems

	Evolution in Relation to Risk and Trust Management

	Why Critical Systems Need Help to Evolve
	Simplicity as a Driver for Agile Innovation

	Recommended Resources

	About the Editors - Hinchey and Coyle

	About the Editors - Nuseibeh and Fiadeiro

	Next Main:
	Page 1: Off

	Contents Main:
	Page 1: Off

	Contents 7:
	Page 2: Off
	Page 52:

	Previous 7:
	Page 2: Off
	Page 52:

	Next 7:
	Page 2: Off
	Page 52:

	Show 7:
	Page 2: Off
	Page 52:
	Page 53:

	Hide 7:
	Page 2: Off
	Page 52:
	Page 53:

	Show 2:
	Page 3: Off

	Hide 2:
	Page 3: Off

	Next 2:
	Page 3: Off

	Previous 2:
	Page 3: Off

	Contents 3:
	Page 4: Off
	Page 5:
	Page 6:

	Previous 3:
	Page 4: Off
	Page 5:
	Page 6:

	Next 3:
	Page 4: Off
	Page 5:
	Page 6:

	Show 3:
	Page 4: Off
	Page 5:
	Page 6:

	Hide 3:
	Page 4: Off
	Page 5:
	Page 6:

	Contents 4:
	Page 7: Off
	Page 14:
	Page 22:
	Page 30:
	Page 38:
	Page 47:

	Previous 4:
	Page 7: Off
	Page 14:
	Page 22:
	Page 30:
	Page 38:
	Page 47:

	Next 4:
	Page 7: Off
	Page 14:
	Page 22:
	Page 30:
	Page 38:
	Page 47:

	Show 4:
	Page 7: Off
	Page 14:
	Page 22:
	Page 30:
	Page 38:
	Page 47:

	Hide 4:
	Page 7: Off
	Page 14:
	Page 22:
	Page 30:
	Page 38:
	Page 47:

	Contents 5:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 48:
	Page 49:
	Page 50:

	Previous 5:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 48:
	Page 49:
	Page 50:

	Next 5:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 48:
	Page 49:
	Page 50:

	Show 5:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 48:
	Page 49:
	Page 50:

	Hide 5:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 48:
	Page 49:
	Page 50:

	Contents 6:
	Page 51: Off

	Previous 6:
	Page 51: Off

	Next 6:
	Page 51: Off

	Show 6:
	Page 51: Off

	Hide 6:
	Page 51: Off

	Contents 8:
	Previous 8:

