
Using Situation Lattices in Sensor Analysis∗

Juan Ye, Lorcan Coyle, Simon Dobson, and Paddy Nixon
System Research Group, School of Computer Science and Informatics,

UCD, Dublin, Ireland

E-mail: juan.ye@ucd.ie

Abstract

Highly sensorised systems present two parallel chal-
lenges: how to design a sensor suite that can efficiently and
cost-effectively support the needs of given services; and to
extract the semantically relevant interpretations, or “situa-
tions”, from the flood of context data collected by the sen-
sors. We describe mathematical structures called situation
lattices that can be used to address these two problems si-
multaneously, allowing designers to both design and refine
situation identification whilst offering insights into the de-
sign of sensor suites. We validate the accuracy and effi-
ciency of our technique against a third-party data set and
demonstrate how it can be used to evaluate sensor suite de-
signs.

1. Introduction

A pervasive computing environment assumes a number
of invisible sensing/computational entities that collect in-
formation about users and an environment. With the help of
these entities, a pervasive computing system will be able
to understand users’ situations or demands so that it can
deliver services in a contextual manner. To facilitate this
understanding, we propose a well-founded mathematical
structure, called the situation lattices, to study relationships
between a large number of low-level sensed data and high-
level situations or human activities.

Within a situation lattice, sensor data are abstracted and
organised with respect to their semantics (such as different
abstraction levels and conflicts between them). The situ-
ation lattice will apply basic semantics to learn richer se-
mantics that describe relationships between sensor data, be-
tween sensor data and situations, and between situations.

∗This work is partially supported by Science Foundation Ireland under
grant numbers 05/RFP/CMS0062 “Towards a semantics of pervasive com-
puting”, 07/CE/I1147 “Clarity, the centre for sensor web technologies”,
and 04/RPI/1544 “Secure and predictable pervasive computing”.

Situation lattices have been proposed in our earlier
work [22, 23], which allowed developers to manually or-
ganise abstracted sensor data in a lattice and to label them
with situations. The preliminary evaluation results were
promising when we constructed a simple situation lattice
to describe research activities in an office environment by
using a small number of sensor data. This paper extends
the initial model of situation lattices to deal with more com-
plicated environments where a larger number of sensors are
involved and relationships between sensor data and situa-
tions are less explicit.

This paper proposes new approaches to automatically
generate a situation lattice with respect to context predi-
cates, which are abstracted from sensor data; and to auto-
matically label context predicates with situations. We will
use situation lattices to help system developers to evaluate
the performance of sensors, including evaluating whether
a new sensor (or a new type of sensors) should be intro-
duced, depending on whether existing sensors can suffi-
ciently recognise situations.

To test the general applicability of a situation lattice, we
demonstrate its feasibility by building it from the third-party
real world data set – the PlaceLab data set [7]. The Place-
Lab is an instrumented home that contains over nine hun-
dred sensors. The data set was gathered in the real world
conditions in that a married couple (who were unaffiliated
with the PlaceLab research) lived in the PlaceLab over a
period of 15 days. During this period, they were encour-
aged to maintain their life routine as normal as possible.
The Placelab was also instrumented with the audio-visual
recording infrastructure that was used to record activities of
the subjects except for private activities (such as bathing).
The video was annotated by a third party, which provided
the ground truth of this data set. So far, only the activities
of the male subject were annotated. Besides the sensor data
and annotated diary, this data set involved a location map
of this home, and a sensor metadata file1. This metadata

1The sensor metadata file is available online. http:
//web.media.mit.edu/∼intille/data/PLCouple1/



file records the meta information about each sensor input,
including its type, its identity (ID), where (e.g., the living
room) it is installed, and which object (e.g., the couch in
the living room) it is attached to. More details about the
PlaceLab data set will be described in Section 4.1.

This paper is organised as follows. Section 2 compares
our approach with the main stream of work in situation
identification and activity recognition. Section 3 describes
a conceptual model of information flow in a pervasive com-
puting system such as sensor data, context, and situations
and introduces the theoretical foundation of situation lat-
tices. Section 4 describes the PlaceLab data set (including
the sensors and the primary activities of the subjects). It
demonstrates how a situation lattice is constructed on this
data set: abstracting context predicates from sensor data,
defining semantics between context predicates, generating
a situation lattice, and training and pruning it. Section 5 ap-
plies situation lattices in inferring situations and analysing
sensors. In the end, we will draw a conclusion of our work
in Section 6.

2. Related Work

There are two typical approaches to define situations:
specification-based approaches using expert knowledge [6,
8, 14, 20], and learning-based approaches using machine
learning techniques [1, 4, 5, 7, 9, 10, 18, 23]. The
complexity of a pervasive computing environment under-
mines the effectiveness of these two approaches. With the
specification-based approach, since information in a per-
vasive computing covers sensor data, domain knowledge
about an environment (that is, a property of an environment
like a space map) and users (like social network or tasks),
developers must consider all this information and then be
able to provide good definitions of situations.

With learning-based approaches, developers widely ap-
ply machine learning techniques such as decision tree [1, 7],
Bayesian inference [15, 23], and Hidden Markov Mod-
els [5, 18]. Bao et al [1] used decision tree to learn user
body motions (such as bicycling, shaking hands, or typ-
ing) using the raw sensor data from accelerators on hu-
man body. Kasteren et al [15] carried out activity recogni-
tion in a Bayesian framework. They used a static Bayesian
model to learn the relationship between different sensor data
and human activities, and also used a dynamic Bayesian
network to model the temporal aspects of activities. Wo-
jek et al [18] proposed to use a multi-level hidden markov
model to recognise activity from the audio and video data.
These approaches consume a large number of training data
to build a model or estimate parameters [14].

All these machine learning techniques are good at learn-
ing activities from “flat” information; that is, information

PLObjects oct23.xml

consists of individual pairs of attribute and value, and there
is no direct relationship between attributes. These tech-
niques do not facilitate the expression of the semantics of
information. If two pieces of information are conflicting or
at different abstraction levels, these techniques will not be
able to represent and use the relationships in their learning
process. However, these rich semantic relationships of con-
text are one of the characteristics of context in pervasive
computing.

We assume that developers might have more accurate
and sound knowledge in each local domain than their
knowledge about the whole domain; that is, how to inte-
grate and relate the knowledge in local domains to situa-
tions. Situation lattices use a semi-learning means in that
they allow experts to express their knowledge about local
domains and use this knowledge to exploit the knowledge
about the whole domain. This approach will be able to take
the advantages of both specification-based approaches and
learning-based approaches, and compensate for their defi-
ciencies.

3. Situation Lattice

This section will provide an understanding of informa-
tion flow in a pervasive computing, including sensor data,
context, and situations. Based on this basic understanding,
we will describe the theoretical model of a situation lattice.

3.1. Sensor Data, Context, and Situations

In a pervasive computing environment, sensors gather in-
formation about users and their surroundings. A piece of
sensor data consists of at least a time stamp, a sensor ID,
and a sensor reading that represents how this sensor charac-
terises a property of a user or an environment.

To facilitate the reuse and sharing of information in a
system, sensor data need to be translated and represented
in a structured representation – context predicates. Context
predicates are defined as characteristic functions on sensor
data. For example in the electrical current flow context,
a context predicate currentInLivingRoomOn holds if
the current flow value from a sensor is above 100.00. In the
time context, a context predicate 17-18 holds if a time in-
stant is between the hour 17:00 and 18:00. Contexts are in-
stantiated context predicates that represent a concrete snap-
shot of reality.

In one type of context, context predicates can have se-
mantic relationships: various abstraction levels and conflict.
In the time context, a predicate 17-24 holds when a time
instant is between the hour 17:00 and 24:00, which is at
a coarser granularity than another predicate 17-18. Also,
two context predicates can be conflicting with each other, if
any sensor datum that satisfies one of these predicates will

2



never satisfy the other one. Ye et al [24] has applied set the-
ory to formally discuss the semantic relationships between
context predicates.

Situations are defined as an external semantic interpre-
tation of context by Coutaz et al [3]. Each situation cor-
responds to invariant characteristics of contexts and their
combination [16]. Each of the characteristics can be ex-
pressed as a logical description that takes context predicates
as input and applies logical operators between them. A user
is considered to be in a situation when its logical description
is satisfied by the current context related to the user.

This paper aims to propose a model to express the above
semantic relationships between context predicates. The
model will be able to integrate the local knowledge and
exploit richer semantics between machine-understandable
sensor data and human-understandable situations.

3.2. Theoretical Model of Situation Lattices

Based on lattice theory [2], we propose a new data struc-
ture to study the relationship between logical descriptions
and situations, called a Situation Lattice.

A situation lattice consists of a set of nodes that are or-
ganised with the specialisation relationship. Each node rep-
resents a logical description of context predicates, which is
associated with a set of situations. The semantics of each
node is that when the logical description of a node holds
(or a node is activated), any situation in its situation set is
possible to occur. Alternatively, any situation that is outside
this situation set is impossible to occur.

There are two types of nodes in a situation lattice: pre-
liminary nodes, whose logical description is a single context
predicate; and compound nodes, whose logical description
is a conjunction of context predicates. A compound node is
created from preliminary or other compound nodes.

The specialisation relationship is a partial order defined
between nodes. A node is considered more specific (v) than
another node, if and only if the logical description of the
former node entails that of the latter node. The semantics
of the specialisation relationship is that whenever a more
specific node is activated, then all its more general nodes
are activated. The formal definition of a situation lattice is
given as follows.

Definition 1. A situation lattice L = (N,v) is defined as
follows.

• ∀n ∈ N , n has a logical description n.l and n corre-
sponds to a set of situations n.S that are interesting to
applications.

• ni v nj ∈ N iff ni.l ` nj .l, where ` is the logical
entailment relationship.

We specify a few assumptions on a situation lattice,
which are given as follows: Among all the nodes,

• Assumption 1: there exists a unique top node n>
whose logical description is a tautology TRUE. n> cor-
responds to all situations. Its semantics is that if no
sensor reading is available, then any situation is possi-
ble to occur;

• Assumption 2: there exists a unique bottom node n⊥
whose logical description is a contradiction FALSE.
n⊥ corresponds to an empty set of situations. Its se-
mantics is that if sensor readings are conflicting, then
no situation can be derived;

• Assumption 3: no two nodes share the same logical
description.

A situation lattice is a join semi-lattice. For any two
nodes, there exists a join node that contains the greatest log-
ical description that is entailed by any logical description on
these nodes. The situation set on their join is the least su-
perset of the union of their situation sets. There does not
necessarily exist a meet for any two nodes. If there exists a
meet for a set of nodes, the logical description on the meet
contains the least logical description that entails any logical
description on these nodes. The situation set on their meet
is the greatest subset of the intersection of their situation
sets.

Within a situation lattice, we can express the semantic re-
lationships between context predicates: various abstraction
levels and conflict. According to Definition 1, the various
abstraction levels between two context predicates are repre-
sented as a specialisation relationship between two prelimi-
nary nodes that host these two context predicates. The meet
is used to express the conflict relationship. If two nodes
host conflicting context predicates, then their conjunction
is FALSE. According to Assumption 2 and 3, there exists a
unique node n⊥ whose logical predicate is FALSE, so the
meet of conflicting context predicate is n⊥. This conflicting
relationship is formalised in the following corollary.

Corollary 2. ni u nj = n⊥, iff ni.l ∧ nj .l = FALSE.

Once the conflicting relationship is defined between two
preliminary nodes, it will be “inherited” by their more spe-
cific nodes. That is, if two nodes ni and nj are conflicting,
then any of their more specific nodes n′i and n′j should con-
flict with each other (see Lemma 3). This will be used to
avoid inconsistency (no compound nodes are created from
conflicting nodes) during the process of automatically gen-
erating a situation lattice.

Lemma 3. If ni u nj = n⊥, then ∀n′i v ni, n′j v nj ,
n′i u n′j = n⊥.

3



4. Construction of Situation Lattices

This section will describe how a situation lattice is built
from scratch. We will use the PlaceLab data set as an ex-
ample to demonstrate the following processes: (1) defin-
ing preliminary nodes by abstracting sensor data into con-
text predicates; (2) defining semantic relationships between
preliminary nodes using domain knowledge; (3) generating
a situation lattice based on the preliminary nodes; and (4)
training and refining the lattice.

4.1. The PlaceLab Data Set

The PlaceLab is a living laboratory in Cambridge,
Massachusetts, which is designed to be a highly flexible and
multi-disciplinary observational research facility. It is used
for the scientific study of people and their interaction pat-
terns with new technologies and home environments. The
PlaceLab contains over nine hundred sensors inputs, which
covers the following types of sensors:

Wireless infra-red motion sensors detect motion in the
regions of the laboratory, including the living room, the
foyer, the dining room, the kitchen, the office, the bedroom,
the bathroom, and the powder room. These sensors can be
used to infer the subject’s location, but they are not always
accurate. The sensors are not person-specific, so the sensed
motion can be caused accidentally or by the other subject.
Different sensors often report the motions at the same time.

“Stick-on” object motion sensors are installed on doors,
cabinets, couches, remote controls and measure their use
by sensing motion in them. These sensors are not person-
specific in that it is impossible to know which subject
caused an object’s motion. Since these sensors are installed
in large numbers of objects, it is difficult to maintain a good
sensor metadata file.

Switch sensors measure the state of objects like doors,
cabinets, and wardrobes: whether they are open or closed.
RFID sensors measure whether an object is being accessed
or not. The RFID reader does not work well due to techni-
cal limitations, being inaccurate if the distance between the
reader and the tag is outside the range of the reader [7]. In
this data set, only the male subject wore the RFID reader on
his right wrist.

Electrical current, water, and gas flow sensors measure
the real-time usage of current, water, and gas in the home.
The current flow sensors are installed on residential circuits
including the living room, the office, and the kitchen. The
water flow sensors are installed on the faucets in the kitchen,
the bathroom, and the powder room. The gas flow sensor is
installed on the stove.

Environmental sensors measure the temperature, humid-
ity, and barometric pressure in different regions in the liv-
ing space. 3-axis accelerometer sensors measure a subject’s

body movement, which are only worn on the male subject’s
limbs and wrists.

During the data collection time, the subjects tried to live
as normally as possible. The primary activities that were
recorded in the diary are listed in Table 1.

Activity Description
using phone using a portable phone or the phone

on the fax machine in the office
using a com-
puter

using a desktop in the office or a lap-
top anywhere

reading reading books, magazines, or printed
paper

eating a meal eating regular meals
eating a snack eating a light meal
meal prepara-
tion

retrieving ingredients or cookware,
combining or adding, stirring or mix-
ing, warming food using microwave,
or preparing a drink

watching TV sitting in front of the television and
actively watching TV or movies

dishwashing washing hand or rinsing dishes using
the faucet in the kitchen

hygiene mainly about activities in the bath-
room or powder room, like toileting,
showering, or washing face

grooming getting undressed or dressed, includ-
ing clothes and sensors

Table 1: The primary activities in the PlaceLab data set

To demonstrate our work, we chose a subset of sensors
that are straightforward to interpret and are potentially re-
lated to the above activities, which are the wireless infra-
red motion sensors, electrical current, water, and gas flow
sensors, switch sensors, RFID, and object motion sensors.
In our experiment, we chose a subset of the data set that
included only the days that were covered by the diary data,
which are 2006-08-23, 2006-08-25, 2006-09-05, 2006-09-
06, 2006-09-11, 2006-09-12, 2006-09-14, and 2006-09-18.
In total, we used almost 40 hours of the PlaceLab data out
of 104 hours.

4.2. Defining Preliminary Nodes

To create a situation lattice, developers should define
preliminary nodes for each single context predicate. A con-
text predicate is a characteristic function on sensor data,
which is associated with a set of sensor IDs and a constraint
on readings from these sensors. A context predicate holds
if its constraint is satisfied by a reading from any of these
sensors. For the PlaceLab data set, we use the sensor meta-
data file. We classify the sensor IDs according to the types

4



of sensors, and defined context predicates for each sensor
ID. The context predicates can be defined according to de-
velopers’ knowledge on sensors, or sensors’ technical spec-
ifications that indicate what a sensor reading means.

The PlaceLab researchers have published the technical
specification of their sensors online2. For a switch sensor,
the specification recorded that when its reading is either 0
or 200, then the state of an object that it attaches to is open;
when a reading is 100 or 300, then the state of the object
is close. One of the switch context predicates is defined
as doorInBedroomOpen, which holds when the switch
sensor on the bedroom door produces readings 0 or 200.

We could define context predicates by observing the sen-
sor readings for each sensor ID in the sensor output files,
since the technical specification does not record charac-
teristic readings for all the sensors. For example of the
infra-red motion sensors, their sensor output files records
a list of time stamps, sensor IDs, and their corresponding
values (which are either 5 or 10). Based on the output
file, we define the location context predicates; for exam-
ple, inLivingRoom is defined on a sensor ID 2088 when
its reading is no less than 5. Using the same approach, we
define context predicates for the electrical current, water,
and gas flow sensors. We also define the time context pred-
icates since the activities are potentially time-related such
as ”grooming”. The time predicates are defined in an hour
scale, e.g., 17-18 or 23-24.

RFID and object motion sensors have a similar function
of sensing whether an object is accessed or moved. If one
object is attached by these two sensors, we define one object
access context predicate on this object. For example, we de-
fine an object access predicate called laptopAccessed
on the laptop that has two sensors attached: the RFID sensor
E00700001E226FEE and the object motion sensor 956.
This predicate holds, if the RFID sensor is recorded, or the
reading of the object motion sensor is greater than 0.

If sensors produce sophisticated readings (such as the
body 3-axis motion accelerometers), machine learing tech-
niques could be used to train context predicates. It would be
simple if there existed a diary about fine-grained activities
that recorded the movement of the subjects, such as walk-
ing, sitting, moving the arm, or lifting an object. Since the
PlaceLab data set only provides a diary that records higher
level activities as shown in Table 1, we cannot define move-
ment context predicates from these accelerometers, so we
do not use these sensors in our experiments.

2The technical specification of the PlaceLab sensors are avail-
able online. http://architecture.mit.edu/house n/data/
PlaceLab/PLIA1.htm

4.3. Defining Relationships between Preliminary Nodes

Developers can apply the domain knowledge to de-
fine the semantic relationships between these preliminary
nodes as discussed in section 3.1. The domain knowl-
edge can be the knowledge about an environment such
as a location map, which defines the spatial containment,
connectedness, and disjointness relationships between lo-
cations [21]. In the PlaceLab environment, the location
context predicates conflict with each other, since each of
them represents an individual room and the subject can-
not be in two different rooms at the same time. Develop-
ers can also express their common-sense knowledge, for
example, the predicates lightInLivingRoomOn and
lightInLivingRoomOff cannot hold at the same time.
The conflict between context predicates is represented by
defining the bottom node as the meet of their host nodes (in
Corollary 2). Another semantic relationship is varying ab-
straction level, which is expressed as the specialisation rela-
tionship between their host nodes. For example, a prelimi-
nary node hosting the time predicate 17-23 is defined more
specific than another preliminary node hosting 17-24.

4.4. Generating a Situation Lattice

The lattice generation algorithm will automatically gen-
erate a situation lattice by starting from the preliminary
nodes and combining nodes level by level until all the non-
conflicting nodes are combined. This top-down generation
process guarantees the existence of the join for any pair of
nodes in a situation lattice. The process of creating a new
node is described as follows. Given two nodes ni and nj ,
their compound node (labelled as ni ⊗ nj) can be

• the bottom node, if they are conflicting, which is eval-
uated by using Corollary 3;

• or a new node nij = ni ⊗ nj with

– nij .l = n1.l ∧ n2.l;

– nij .S = n1.S ∩ n2.S;

– nij v ni; and

– nij v nj .

The generation process suffers a large problem of scal-
ability. Given m preliminary nodes, the complexity of
generating a lattice (with the conjunction) will be O(2m).
With the scalability problem, it is unrealistic to list all
the combinations of the context predicates. This is the
reason that a situation lattice is not meet complete, since
we do not combine all the non-conflicting preliminary
nodes. A practical approach is to combine the nodes if

5



their predicates are related to each other. In our exper-
iment, we combine the context predicates if they are re-
lated to the same location. For example, a node hosting
currentInLivingRoomOn is combined with a node
hosting lightInLivingRoomOn, while it is not com-
bined with a node hosting currentInOfficeOn. The
underlying assumption is that the context (or the sensor
data) closely related to the surrounding of the subject will
have a major effect on inferring his current situations.

We have defined 7 location predicates and 7 time pred-
icates. We split the switch predicates, the current, water
and gas flow predicates into these seven locations: 4 cur-
rent predicates in the living room, 2 switch predicates and
4 current predicates in the office, 2 current predicates in the
dining room, 6 switch predicates and 2 current predicates in
the bedroom, 12 switch predicates, 4 current, 2 flow, and 2
gas predicates in the kitchen, 4 switch predicates, 2 current
and 2 flow predicates in the bathroom and powder room re-
spectively. For RFID and object motion predicates, we clas-
sify them into eight groups: the predicates in the first group
that are defined on moveable objects and thus can be com-
bined with a predicate in any location, and the predicates
in the following seven groups that were defined on objects
belonging to a particular location and can only be combined
with predicates in the same location.

For each location, the generation algorithm generates the
compound nodes by combining non-conflicting time, loca-
tion, switch, RFID, and object motion predicates, and cur-
rent/water/gas flow predicates. For example in the living
room, given 4 current predicates with 2 pairs of conflict-
ing predicates, 8 compound nodes are generated with these
current predicates. 624 (=8×7+ 8×8+ 7×8+8×7×8) com-
pound nodes are generated with the above 8 current com-
pound nodes, 7 time predicates, and 8 object access predi-
cates in the living room. With the same process, we gen-
erate a situation lattice with 27649 nodes in total: 1 top
node, 1 bottom node, 113 preliminary nodes and 27534
compound nodes. The lattice of this size is easier for a sys-
tem to manage, compared to a fully generated lattice with
about 2113 nodes.

4.5. Training and Refining a Situation Lattice

So far, we have combined all the context predicates in
a lattice. Now we will start to learn what these combined
context predicates mean; that is, relationship between them
and human-understanding situations. This is done by train-
ing a situation lattice with synchronised sensor and diary
data. The training process will attach each node to a set
of situations; that is, at each time instant when all context
predicates on a node hold, the situations recorded occurring
in the diary will be added to this node’s situation set, which
is presented in Figure 1. At the end of training, each node is

associated with the times it is activated, and an array of situ-
ation occurrences (how many times a situation occurs when
it is activated). For each node, the array of situation oc-
currences can be normalised, by being divided by the total
occurrence of each situation.

sensor values: v1, v2, ..., vn

1. activate preliminary and 
compound nodes

occurring situations: 
s1, s2, ..., sm

node 
occurrences++

s1 s2 ... sm ...
occurrences++ occurrences++ occurrences++

2. update occurrences of 
each activated node

3. update occurrences 
of situations on each 

activated nodelattice

Figure 1: A process of training a situation lattice

After training, the lattice will be pruned by remov-
ing ineffective nodes. Nodes are ineffective if they have
never been activated, or no situations occur when they
are activated. By examining the removed nodes, we
summarised the features of ineffective nodes. Nodes
not being activated can be caused by ineffective sen-
sors or bad combinations of predicates. For example,
snackAccessed never holds, since RFID sensors on
all the snack related objects (such as chips or peanuts)
do not work well. An example of bad combinations of
predicates is the node with currentInLivingRoomOn
∧ lightInLivingRoomOff that never holds in the
training data, which uncovers the subject’s activity pat-
tern: whenever he used the electronics in the living room,
he would switch on the light first. Another type of in-
effective nodes is that they do not contribute to identi-
fying any situation. For example, no situations are oc-
curring when the node with inOffice ∧ 23-24 ∧
currentInOfficeOff ∧ lightInOfficeOff is
activated.

We synchronise the sensor and diary data, and slice them
into 10-second gaps, which produce 13870 pairs of sensor
and diary instances. We use two third of them to automati-
cally train the lattice and prune it using the above two rules.
In the end, the number of the nodes is reduced to 13035,
which is half of the size of the initial lattice.

5. Applications of a Situation Lattice

When a situation lattice is trained, it is ready to be used
in inferring situations and evaluating the discernibility of
sensors in detecting situations.

6



5.1. Inferring Situations

With respect to inferring situations, the structure of a sit-
uation lattice makes forward chaining algorithms more ef-
ficient by evaluating all the predicates just once. When fed
with a set of sensor readings, the system starts by evalu-
ating the predicates on all the preliminary nodes from the
top. Situation inference is a procedure of applying the meet
operator u on all the activated preliminary nodes. Since the
lattice is not meet-complete, the procedure may end up with
a set of nodes that are most specific among all the activated
nodes, instead of a unique node.

Instead of inferring a single situation, a situation lattice
will return the following two sets of situations where each
situation is provided with its occurrence ratio:

• a set of possible-to-occur situations that is the union
of the situations in these resultant nodes, which indi-
cates that the situations outside this set are impossible
to occur; and

• a set of most-likely-to-occur situations that is the inter-
section of the situations in these resultant nodes, which
indicates that these situations are more likely to occur
compared to the other situations in the above set.

For example, if a situation lattice ends up with two most
specific nodes whose situation sets are {“using computer”,
“reading”} and {“watching TV”, “reading”} respectively,
then the situations possible to occur are in {“watching
TV”, “using computer”, “reading”}, and the situations most
likely to occur are in {“reading”}.

The inference result of a situation lattice provides more
accurate and detailed information about what is occurring
in the real world. This will help application developers
to design a more robust and customised system. Applica-
tions (or services) related to the most-likely-to-occur situa-
tions will be provided with a high confidence, while appli-
cations whose corresponding situations are not contained in
the possible-to-occur situations should never be triggered.
Applications related to the situations that are possible but
not most likely to occur are not suggested to be triggered,
but they can be triggered with the consideration of their as-
sociated occurrence probability and other design require-
ments.

5.1.1 Evaluation Methodology

We use the stratified 10-fold cross validation technique, and
compare our result with the result using Naive Bayes and
decision tree in WEKA software package [17]. These tech-
niques were used in the PlaceLab data set paper [7], and
they achieved good results.

The accuracy of inferring situations is evaluated using
two parameters: precision and recall. Precision is the ratio

of the times that a situation is correctly inferred to the times
that it is inferred in most-likely-to-occur situation sets. Re-
call is the ratio of the times that a situation is correctly in-
ferred in possible-to-occur sets to the times that it occurs.

When there exist conflicting nodes among the resultant
nodes, the most-likely-to-occur situation set should be an
empty set (see Lemma 3); that is, if the nodes conflict, then
their situation sets should be mutually exclusive. In addi-
tion, the possible-to-occur situations will contain all the sit-
uations, when the conflicting sensor data activate most of
preliminary nodes. Under this circumstance, all the situ-
ations are equally possible to occur, while none of them
is most likely to occur. This makes both the possible-to-
occur and the most-likely-to-occur situation sets insensitive
to sensors. This insensitivity will produce 100% precision
and 100% recall, which is a “fake victory” in our evaluation.

To avoid the insensitivity, we set thresholds on occur-
rence ratio of each situation to refine situations in the most-
likely-to-occur and the possible-to-occur sets. When the
conflict is detected in the resultant nodes, the most-likely-
to-occur situation set will contain the situations with the
highest probability, which excludes the possibility of 100%
precision. The possible-to-occur situation set will filter
out the situations whose occurrence ratio is below its cor-
responding threshold, which decreases the possibility of
100% recall but does not exclude it. Therefore, we will
calculate the chance that a possible-to-occur situation set
covers all the situations.

Since we will set thresholds on each situation to select
most-likely-to-occur and possible-to-occur situations, now
the question is how to set them. A threshold should bal-
ance the precision and recall. If a threshold is too low, it
guarantees the best recall but reduces the precision greatly.
If a threshold is too high, it guarantees better precision but
decreases the recall. To balance the precision and recall,
we apply the following F-measurement [25] that treats the
precision and recall equally.

F =
2× precision× recall

precision + recall

For each situation, we set the initial threshold to 1.0
and repeat reducing the threshold down to 0 with the scale
0.005. For each situation, we calculate the F-measurements
for all these thresholds and choose the inference result that
achieves its highest F-measurement, which best balances its
precision and its recall.

5.1.2 Inference Experiment on PlaceLab Data Set

We use the synchronised 13870 sensor and diary instances
in Section 4.5 to conduct stratified 10-fold cross validation
on the situation lattice, Naive Bayes, and Decision Tree.
There are 250 (1.8%) times that the possible-to-occur sit-
uation sets cover all the situations during these 10 folds’

7



validations. It shows that there is a small chance that the
possible-to-occur situation sets are insensitive. Figure 2 and
3 present the comparison of recall and precision in inferring
situations between situation lattice, decision tree, and Naive
Bayes.

0 

0.2 

0.4 

0.6 

0.8 

1 

us
ing
 ph
on
e 

us
ing
 co
mp
ut
er
 

re
ad
ing
 

ea
8n
g 

me
al 
pr
ep
ara
8o
n 

wa
tch
ing
 TV
 

dis
hw
as
hin
g 

hy
gie
ne
 

gro
om
ing
 

situa8on la>ce  J48 decision tree  Naïve Bayes 

Figure 2: Recall for situation lattice, Naive Bayes, and De-
cision Tree

Figure 2 shows that the situation lattice has the highest
recall on most of the situations (except for “hygiene”), since
the possible-to-occur situations contain all the possible sit-
uations that are above the threshold. Figure 3 shows that the
situation lattice has the relatively lower precision compared
to the other two techniques.

0 

0.2 

0.4 

0.6 

0.8 

1 

us
ing
 ph
on
e 

us
ing
 co
mp
ut
er
 

re
ad
ing
 

ea
8n
g 

me
al 
pr
ep
ara
8o
n 

wa
tch
ing
 TV
 

dis
hw
as
hin
g 

hy
gie
ne
 

gro
om
ing
 

situa8on la>ce  J48 decision tree  Naïve Bayes 

Figure 3: Precision for situation lattice, Naive Bayes, and
Decision Tree

By examining the low-precision situations, we sum-
marise the causes that a situation lattice has the low per-
formance.

• The precision of inferring a situation will be low, if the
sensors that are supposed to identify this situation are
not accurate. For example, the situation “dishwashing”
should be identifiable if the positioning sensor can ac-
curately locate the male subject’s location (i.e., in the
kitchen), and the faucet in the kitchen can recognise
that the male subject is accessing it.

• The precision of inferring a situation will be low, if
the definition of this situation is imprecise; for exam-
ple, “meal preparation” covers all the cooking activ-
ities (even including preparing a drink); “grooming”
can be getting dressed or undressed (including clothes
and worn sensors); “eating” can be eating a proper
meal, or snack, or drinking. The imprecise definition
of a situation makes it hard to discover its pattern.

• The precision of inferring a situation will be low, if this
situation can randomly co-occur with any other situa-
tion and there are no effective sensors to identify it.
For example, “using phone” can occur with any other
situation at any time in any room. Since this situation
cannot be identified or distinguished from other situ-
ations with characterised sensor data, this situation is
frequently co-inferred with other situations.

5.2. Discernibility of Sensors on Situations

With even more sensors available and ready to be widely
instrumented, developers in pervasive computing will need
to find out what sensors satisfy application requirements
best. If there exists a pair of situations that are required
to be precisely identified but cannot be distinguished from
each other with the existing sensors, developers might be
interested in what new sensor or new type of sensors should
be introduced. When the sensors are ready to be widely
installed in other environments (for example, sensors for a
smart home are ready to use in normal people’s homes), de-
velopers might also need to find out what is the best config-
uration of sensors to achieve the best accuracy of inferring
situations.

A situation lattice can facilitate detecting indistinguish-
able situations; that is, the situations are always identified at
the same time. Indistinguishable situations can be caused by
human activity patterns, for example, in the PlaceLab data
set people often watch TV while they eat. They can also be
caused by the lack of effective sensors, for example, only
with positioning sensors it is difficult to determine whether
people are reading or watching TV. Situation lattices can-
not only detect when indistinguishable situations exist, but
also they can point out what condition (or what sensor data)
makes them indistinguishable. According to the require-
ments of applications, developers can decide whether the
detected situations are necessary to be distinguished or not.
If they are necessary, developers can use situation lattices to
evaluate which type of sensors will have the best discerni-
bility.

In a situation lattice, each node immediately above the
bottom node should capture the smallest perceivable snap-
shot of reality, since it contains a conjunction of finest
grained context predicates. Situations on each of these
nodes should reflect the exact situations that are occurring.

8



If two situations share any of the same most specific nodes,
then these two situations will be co-inferred whenever this
node is activated. Algorithm 1 describes the process of de-
tecting pairs of indistinguishable situations.

Algorithm 1: The algorithm of detecting indistinguish-
able situations

input : a set of nodes N immediately above the
bottom node and a set of situation names Ss

output: pairs of indistinguishable situations

initialise a node array nodes with the same size as Ss

foreach Node n ∈ N do
foreach Situation s ∈ n.S do

add n in nodes[s.id]

initialise a hashtable pairs whose key is a pair of
situation IDs and whose value is a set of nodes such
that when these nodes are activated, this pair of
situations are inferred together
for i← 0 to Ss.size do

for j ← i + 1 to Ss.size do
if nodes[i] ∩ nodes[j] 6= ∅ then

if (i, j) not in pairs then
initialise a set of nodes Nij

add all nodes[i] ∩ nodes[j] in Nij

put ((i, j), Nij) in pairs

return pairs

5.2.1 Sensor Evaluation Experiments on the PlaceLab
Data Set

We will conduct an experiment to show how situations can
be gradually distinguished from each other as new sensors
are introduced. We start with an environment where no sen-
sors are installed. We can build a simple situation lattice
simply with the time context, since time is completely cost
free [11].

Since the occurrences of most situations are overlapping,
so they are indistinguishable from each other in this lattice
only with the time predicates. We will examine each pair of
indistinguishable situations to locate which situations that
should not co-occur are indistinguishable from each other.
We list a few groups of situations that should not co-occur as
follows: (1) “hygiene” and “watching TV”; (2) “hygiene”
and “meal preparation”; (3) “hygiene” and “dishwashing”;
(4) “grooming”, and “meal preparation”; and (5) “groom-
ing”, and “dishwashing”.

We analyse the nature of these pairs of situations: each
pair of situations occur in different rooms. We have a set of
potential types of sensors to choose: infra-red motion sen-
sors to infer the subject’s location; electrical current, water,

and gas flow sensors to detect the real-time usage of the
flow; and the object motion sensors, switch sensors, and
RFID to detect which objects are accessed or used by the
subject. After examining all these sensors, we consider the
infra-red motion sensors first, since their readings are di-
rectly related to the subject’s location. Also, they are easy to
install [19]: one sensor for each room. In contrast, the other
sensors need a larger number of sensors and consume more
installation effort. Therefore, the infra-red motion sensors
come to our first choice.

A new situation lattice will be created with the location
and time context predicates, and re-trained. Using Algo-
rithm 1, we derive indistinguishable situations from the new
lattice. Some of situations have been completely distin-
guished; for example, “dishwashing”, “hygiene”, “groom-
ing” have been distinguished from the situations “using
phone”, “eating”, and “meal preparation”. “hygiene” has
also been distinguished from “watching TV” and “dish-
washing”; and “dishwashing” from “grooming”. These dis-
tinguished pairs of situations have covered the above listed
pairs of situations that should not co-occur.

Some of the situations are indiscernible at the more spe-
cific condition, even though they are sill indiscernible. For
example,

(1) when 19-21 ∧ inKitchen holds, “meal prepara-
tion”, “using phone”, “using computer”, “reading”,
“eating”, and “watching TV” are indiscernible from
each other;

(2) when 23-24 ∧ inKitchen holds, “dishwashing”,
“using computer”, “reading”, and “watching TV” are
indiscernible;

(3) when 23-24 ∧ inBathroom holds, “hygiene”, “us-
ing computer”, and “reading” are indiscernible; and

(4) when 23-24 ∧ (inBedroom ∨ inBathroom)
holds, “grooming”, “using computer”, “reading”,
“watching TV”, and “hygiene” are indiscernible.

From the above listed conditions, it is easy to observe
the involved noise of sensor data. For example, “watch-
ing TV” should not be attached to the location predicates
inKitchen, inBedroom, and inBathroom. This can
be caused by the fact that when the male subject was watch-
ing TV, the female subject appeared in any of these loca-
tions, which fired the infra-red motion sensors in these lo-
cations. This information discovered in the situation lattice
is consistent with the discussion on the noise of sensor data
in the PlaceLab publication [7].

The following task is to separate “meal preparation”,
“dishwashing”, and “hygiene” from the co-occurring situ-
ations “using computer”, “watching TV”, “reading”, and

9



“eating”. There are two types of sensors left: the electri-
cal current, water, and gas flow sensors, and the object mo-
tion, RFID, and switch sensors. For the condition in (1), we
might consider the water flow sensors in the kitchen, and the
object motion sensor on the faucet that might complement
the noise on the location sensors to distinguish “dishwash-
ing” from the other situations. For the condition in (2), we
might consider the current flow sensor on the microwave,
gas flow sensor on the stove, and any object motion sensor
in the kitchen to distinguish “meal preparation” from the
other sensors. For the condition in (3), we might consider
the water flow sensors in the bath room, and the object mo-
tion sensor on the faucets to distinguish “hygiene” from the
other situations. The situations in the condition (4) have
been covered in the above discussions. We will use these
sensors, and create a new situation lattice using the corre-
sponding context predicates.

A new situation lattice is created with the time
predicates, location predicates, and part of the current,
water, gas flow predicates, and part of the object mo-
tion sensors. Using the same process, we find that
the added sensors help to identify “meal preparation”,
“dishwashing”, and “hygiene” from the other situa-
tions. However, “hygiene” is still indistinguishable
from “using computer” and “eating” when 18-19
∧ inPowderRoom ∧ waterInPowderRoomOff
∧ currentInPowderRoomOff ∧
NothingInPowderRoomAccessed holds. We
believe that this is caused by the noise on the infra-red
motion sensors when the newly introduced sensors are not
fired, since it would be impossible that the male subject
would eat or use computer in the powder room.

0 

0.2 

0.4 

0.6 

0.8 

1 

us
ing
 ph
on
e 

us
ing
 co
mp
ut
er
 

re
ad
ing
 

ea
8n
g 

me
al 
pr
ep
ara
8o
n 

wa
tch
ing
 TV
 

dis
hw
as
hin
g 

hy
gie
ne
 

gro
om
ing
 

ov
er
all
  

8me  8me+loca8on  8me+loca8on+current/water/gas flow +RFID/object mo8on+ switch 

Figure 4: F-measurements on each situation with different
situation lattices.

Figure 4 shows F-measurements on each situation with
the three situation lattices built above. It is obvious that the
F-measurements of most situations are gradually increased
as more sensors are involved.

So far, we have demonstrated how to use situation lat-
tices to find out what condition makes situations indistin-

guishable. Based on the given information, developers can
use their knowledge of sensors to decide what new sensors
might improve in distinguishing situations under a certain
condition.

In another scenario where an environment has installed
with different types of sensors, if these sensors are ready
to be applied in other environments, developers can cre-
ate multiple situation lattices with different combinations of
sensors. These situation lattices will present the discernibil-
ity of the combinations of sensors, such as which combina-
tion of sensors makes which situations indiscernible and the
corresponding accuracy of inference. With this requirement
on a new environment, developers will be able to choose the
best configuration of sensors.

6. Conclusion and Future Work

As the number of available sensors increases, it becomes
difficult for developers to decipher and specify correlations
between sensor data and situations. This paper has proposed
a theoretical structure – the situation lattice – to make it eas-
ier to determine these correlations. This paper has demon-
strated the feasibility of a situation lattice by constructing
one from a real world data set, and has evaluated its perfor-
mance in inferring situations and analysing sensors.

Situation lattices fit the needs of pervasive computing in
that it is toward to manage rich semantics and complexity
in context. Situation lattices provide a framework to allow
developers to express the semantics of context and their do-
main knowledge and use them to uncover the correlation
between context and situations. Situations will be auto-
matically learned with the consideration of all the knowl-
edge represented in situation lattices. In this way, situation
lattices integrate the advantages of both the specification-
related and learning-related approaches.

They can help to build a more robust pervasive comput-
ing system by providing richer inference result. The struc-
ture of a lattice will also make it possible to evaluate the
performance of sensors in distinguishing situations.

Scalability is the major limitation of situation lattices.
Ideally, developers define context predicates, and then a sit-
uation lattice will be generated by automatically combining
all the non-conflicting context predicates. The complexity
of the generation process is O(2n), which is impractical in
a real-time pervasive computing system. One choice is to
combine context predicates if they are related. Thus, a situ-
ation lattice would rule out potentially useful combinations
of context. Besides, the scalability problem limits the ex-
pressivity of logical descriptions. Currently, a situation lat-
tice only supports generating conjunction of context predi-
cates. If disjunction and negation of context predicates are
involved, then the complexity will grow much faster than
exponential [13].

10



In the future, we will evaluate the performance of situa-
tion lattices in more complicated environments like an of-
fice setting, where richer semantics of context need to be
captured, and more interactive activities and more subjects
are involved. We have applied lattice theory in modelling a
space map in a complicated environment (such as a build-
ing or an city plan) in [21]. This work proved the lattice
structure has a powerful expressive ability in representing
the semantics of location information. Another type of con-
text that has rich semantics is social network, so we will
use the lattice theory to model social network information
as well. In the end, we will study how to organise each of
the domain lattices in a situation lattice and deal with the
scalability issue.

References

[1] L. Bao and S. S. Intille. Activity recognition from user-
annotated acceleration data. In Second International Confer-
ence on Pervasive Computing, pages 1–17, Vienna, Austria,
Apr. 2004.

[2] G. Birkhoff. Lattice Theory. Providence, R.I. : American
Mathematical Society, 3rd edition, 1967.

[3] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context
is Key. Commun. ACM, 48(3):49–53, 2005.

[4] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang. An
ontology-based context model in intelligent environments.
In Communication Networks and Distributed Systems Mod-
eling and Simulation Conference (CNDS 2004), pages 270–
275, January 2004.

[5] M. K. Hasan, H. A. Rubaiyeat, Y.-K. Lee, and S. Lee. A
hmm for activity recognition. In 10th International Con-
ference on Advanced Communication Technology (ICACT
2008), volume 1, pages 843–846, Feb. 2008.

[6] K. Henricksen and J. Indulska. Developing contextaware
pervasive computing applications: Models and approach. In
Pervasive and Mobile Computing, In Press, Elsevier, 2005.

[7] B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. S.
Intille. A long-term evaluation of sensing modalities for ac-
tivity recognition. In Proceedings of Ubicomp 2007, pages
483–500, Innsbruck, Austria, September 2007. Springer.

[8] S. W. Loke. Representing and reasoning with situations for
context-aware pervasive computing: a logic programming
perspective. Knowledge Engineering Review, 19(3):213–
233, 2004.

[9] K. Murphy. Dynamic Bayesian Networks: Representation,
Inference and Learning. PhD thesis, University of Califor-
nia, Berkeley, 2002.

[10] N. Oliver, A. Garg, and E. Horvitz. Layered representa-
tions for learning and inferring office activity from multiple
sensory channels. Computer Vision Image Understanding,
96(2):163–180, 2004.

[11] K. Partridge and P. Golle. On using existing time-use
study data for ubiquitous computing applications. In Ubi-
Comp ’08: Proceedings of the 10th international conference
on Ubiquitous computing, pages 144–153, New York, NY,
USA, 2008. ACM.

[12] C. S. Pinhanez and A. F. Bobick. Interval scripts: a program-
ming paradigm for interactive environments and agents. Per-
sonal Ubiquitous Comput., 7(1):1–21, 2003.

[13] U. Priss. Lattice-based information retrieval. Knowledge
Organisation, 27(3):132–142, 2000.

[14] G. Thomson, S. Terzis, and P. Nixon. Situation determina-
tion with reusable situation specifications. In Proceedings
of PERCOMW ’06, pages 620–623. IEEE Computer Soci-
ety, 2006.

[15] T. van Kasteren and B. Krose. Bayesian activity recognition
in residence for elders. In Intelligent Environments, 2007.
IE 07. 3rd IET International Conference on, pages 209–212,
September 2007.

[16] N. Weisenberg, R. Gartmann, and A. Voisard. An ontology-
based approach to personalized situation-aware mobile ser-
vice supply. Geoinformatica, 10(1):55–90, 2006.

[17] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2005.

[18] C. Wojek, K. Nickel, and R. Stiefelhagen. Activity recog-
nition and room-level tracking in an office environment. In
2006 IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems, pages 25–30, Sept.
2006.

[19] C. R. Wren and E. M. Tapia. Toward scalable activity recog-
nition for sensor networks. In LoCA’2006, Lecture Notes
in Computer Science 3987, pages 168–185. Springer, May
2006.

[20] S. S. Yau and J. Liu. Hierarchical situation modeling and
reasoning for pervasive computing. In the Proceedings of
SEUS-WCCIA’06, volume 0, pages 5–10, Los Alamitos,
CA, USA, 2006. IEEE Computer Society.

[21] J. Ye, L. Coyle, S. Dobson, and P. Nixon. A unified seman-
tics space model. In J. Hightower, B. Schiele, and T. Strang,
editors, Location- and Context-Awareness, volume 4718 of
LNCS, pages 103–120. Springer, 2007.

[22] J. Ye, L. Coyle, S. Dobson, and P. Nixon. Using situation
lattices to model and reason about context. In Proceed-
ings of MRC 2007 (coexist with CONTEXT’07), pages 1–12,
Roskilde, Denmark, August 2007.

[23] J. Ye, L. Coyle, S. Dobson, and P. Nixon. Representing and
manipulating situation hierarchies using situation lattices.
Revue d’Intelligence Artificielle, 22(5):647–667, 2008.

[24] J. Ye, S. McKeever, L. Coyle, S. Neely, and S. Dobson. Re-
solving uncertainty in context integration and abstraction.
In Proceedings of the international conference on Pervasive
Services, pages 131–140, New York, NY, USA, July 2008.
ACM.

[25] Y. Zhou, M. Würsch, E. Giger, H. C. Gall, and J. Lü.
A bayesian network based approach for change coupling
prediction. In WCRE ’08: Proceedings of the 2008 15th
Working Conference on Reverse Engineering, pages 27–36,
Washington, DC, USA, 2008. IEEE Computer Society.

11


