
Using Situation Lattices to Model and Reason
about Context!

Juan Ye, Lorcan Coyle, Simon Dobson, and Paddy Nixon

System Research Group, School of Computer Science and Informatics,
UCD, Dublin, Ireland

juan.ye@ucd.ie

Abstract. Much recent research has focused on using situations rather
than individual pieces of context as a means to trigger adaptive system
behaviour. While current research on situations emphasises their repre-
sentation and composition, they do not provide an approach on how to
organise and identify their occurrences efficiently. This paper describes
how lattice theory can be utilised to organise situations, which reflects the
internal structure of situations such as generalisation and dependence.
We claim that situation lattices will prove beneficial in identifying situa-
tions, and maintaining the consistency and integrity of situations. They
will also help in resolving the uncertainty issues inherent in context and
situations by working with Bayesian Networks.

1 Introduction

Context-aware computing systems provide adaptive services or behaviours ac-
cording to different contexts. Context can be sensed from physical sensors, pro-
filed by users, or derived from application or meta-information existing in sys-
tems. This context, acquired without any further interpretation, is called low-
level context. It may be meaningless, trivial, vulnerable to small changes, or
uncertain. A system might not necessarily be expected to adapt its behaviour
to each and every change of context. If the context is incorrectly reported, or is
considered irrelevant to applications, a problem will occur when a system makes
a responsive action in reaction to real-time contextual changes [11].

It is difficult to build behaviours that adapt directly to low-level context.
It is more attractive that a context-aware system is aware of situations, which
are external semantic interpretations of context [4]. Compared to context, sit-
uations are meaningful, relatively stable, and certain. By abstracting contexts
into situations, it is easier to resolve from imperfect context, capture meaningful
contextual changes, and make it transparent to add or remove context sources.
A meeting detection application (such as when Sensay [12] attempts to detect
whether a meeting is taking place or not) should not be overly concerned with
! This work is partially supported by Science Foundation Ireland under grant numbers

05/RFP/CMS0062 “Towards a semantics of pervasive computing” and 04/RPI/1544
“Secure and predictable pervasive computing”.



individual pieces of context, such as noise levels; rather it should concern itself
with what the actual situation is – in this case, whether or not a meeting is tak-
ing place. A meeting situation can be composed with specific contexts: whether
there are more than two people in a designated place; whether the current time
is during office hours; whether the ambient noise levels are high? When a new
type of context is introduced that can influence the situation (e.g., a meeting is
scheduled in the calendar), then the situation specification is modified. However,
its associated actions (e.g., change the mode of the attendances’ mobile phones)
will not be affected.

Situations, as an integral unit of semantics, are considered crucial in deter-
mining a system’s actions. It is beneficial to define system behaviours only on
situations, and make any context or contextual change transparent. Therefore,
a promising context-aware computing system tends to be situation-aware.

As the study of situations has become popular, a huge number of situations
are produced in an ad hoc way (for example, those outlined in Section 2). In
order to benefit from using situations, it is necessary to analyse the internal
relationships between situations. A situation can be decomposed into a set of
smaller situations, which is a typical composition or dependence relation between
situations. One situation can be considered more general than another situation,
which is a generalisation relation: for example, a meeting situation is considered
more general than a conference meeting situation, because the conditions inher-
ent in the conference meeting situation subsume or imply the conditions in a
meeting situation. Alternatively, a situation may be required to precede another
situation, i.e., there is a temporal order between the situations.

Changes in situations may cause the system to adaptively change its be-
haviour, and in turn, this change in behaviour could lead to the generation of
new contexts leading to new situations. Dealing with the rich internal relations
between situations requires an efficient approach to organise situations, detect
inconsistent situation specifications, and study the dynamic evolution of situa-
tions. These challenges are also proposed as future work by Loke [8].

This paper does not aim to provide a novel representation for situations: we
use the typical representation – logical predicates. We focus on how to study the
characteristics of situations by applying lattice theory. Situation lattices will be
used to analyse the relations between situations. They will help to maintain the
consistency and integrity when defining situations. This can avoid checking and
modification of situation specifications when the errors are detected at runtime.
We also study the issue of uncertainty based on situation lattices.

The remainder of this paper is organised as follows: Section 2 introduces the
current state of research in studying situations; Section 3 details the design of sit-
uation lattices, and provides analysis of their characteristics. Section 4 discusses
two approaches for dealing with uncertainties in situation identification. Finally,
Section 5 draws a conclusion to the paper and outlines the future direction of
this research.



2 Related Work

Past research on context-aware systems placed emphasis on modeling low-level
context. More recently, the interest is on how to abstract, represent, and identify
situations from the raw context. Early attempts such as Gu et al.’s ontology-
based model [13] used first-order logical predicates to define situations. These
attempts simply composed context and situation with logical operators.

Yau et al. analysed the semantics of situations and gave them formal rep-
resentations [16]. Context is considered as any instantaneous, detectable, and
relevant property of the environment, the system, or users. A situation is a
set of contexts over a period of time that is relevant to future device actions.
A situation can be atomic or composite. An atomic situation is composed of
contexts in terms of context operators, including function, arithmetic or com-
parison operators, and time constraints. The time constraints involve forAny,
exists, time-stamp, offset, and interval. A composite situation is composed
of atomic or other composite situations in terms of logical operators and time
constraints. This helps application designers to specify situations using formal
expressions.

Costa et al. [3] studied the classification of situations in terms of their com-
position. A situation can be an intrinsic context situation – that is immediately
derived from a single piece of context; it can be a relational context situation –
that is used to associate multiple pieces of context in a certain relation; it can be
a formal relation situation – that is defined by applying formal relations between
two pieces of context directly, such as greater than, subset of, and distance; or
it can be combined situation – that is made up from situations.

Loke [8] proposed a novel way of representing situations by decoupling the
inference procedures of reasoning about context and situations from the acqui-
sition procedure of sensor readings from context-aware systems. They apply a
logic programming approach to characterising situations, which helps the system
designer in naturally individuating and identifying situations for an application.
It also provides a high level of programming and reasoning situation for the
developers.

Thomson et al. provided a reusable library of situation specifications that
helps to automatically determine situations [14]. They expressed different levels
of granularity of a situation through specification inheritance. New specifica-
tions are created as variations of existing ones so that the same situation can
be interpreted at different levels of abstraction. We apply a similar approach
to expressing situations through inheritance, however, the situation lattice we
propose is a higher level structure that can be used to organise the specifications
and further exploit richer characteristics in situations.

Most of the current work studies the composition of situations and formal
representations. However, none of them have proposed a formal mechanism to
organise the situations.



3 Situation Lattice

This section examines the application of lattice theory [1] to the organisation of
situations so as to study the characteristics of situations, such as generalisation,
and dependence.

3.1 Construction of Situation Lattices

Situation lattices are inspired by Woods’ use of lattice theory to recognise situ-
ations in linguistics [15]. A complete lattice is a partially ordered set where each
subset of elements have the least upper bound and the greatest lower bound. The
lattice theory is useful studying the structures with partial order. This paper will
apply this formal theory to study situations.

Definition 1. A situation lattice, L, is defined as L = (S,≤), where S is a
set of situations and the partial order ≤ is a generalisation relation between situ-
ations. Each situation is associated with a logical description l(t1, . . . , tm), where
ti is a context predicate, or a basic or composite situation. si ≤ sj, si, sj ∈ S
defines sj to be a more general situation than si, iff any logical description being
satisfied by sj will be also satisfied by si. If two situations have no generalisation
relation between them, then they are called disjoint situations.

In S, a unique top situation s! is a universally true situation. s! is the most
general situation so that ∀si ∈ S, si ≤ s!. Dually, a unique bottom situation s⊥
is a universally false situation. s⊥ is the most specific situation so that s⊥ ≤ si.
Each situation in S is a basic or composite situation (except s! and s⊥). All basic
situations are immediately under the top situation s!, which are derived from
pieces of context through a general mapping function f(c∗) = s. The function
takes a single piece c or a composition c∗ = c1× c2× . . .× cn of context to derive
a basic situation. A composite situation is made up of basic or other composite
situations and sits under the basic situations in S.

Given si, sj ∈ S, a situation sj is more general than si iff the logical descrip-
tion lj that is satisfied by sj will also be satisfied by si. That is, si ≤ sj implies
that a logical description li subsumes lj , labelled as lj % li. The relations ≤ and
% have the same meaning w.r.t. the partial order. Thus, li can be rewritten by
substituting lj for the corresponding part in li: li = lj∧l∗i ∧l′i, where l∗i is a logical
description particular to li. l′i is the residual part of the logical description, for
besides sj there may be other immediately more general situations above si.

To simplify the logical descriptions of situations, the specific situations auto-
matically inherit the logical descriptions from its immediately general situations.
This approach is used to build and maintain a situation lattice, whose formal
proposition is expressed as follows.

Proposition 1. At the appropriate level of generality of L, a situation s is
specified with a logical description l∗ that is only particular to itself. Its complete
logical description can be obtained from l = (

∧m
i=1 li)∧l∗, where li is the complete

logical description of si that is the immediately more general situation than s:



s ' si. In turn, sn ≤ . . . ≤ s1 holds if all of the complete logical descriptions
satisfy the following condition: l1 % . . . % ln.

Figure 1 shows an example of a situation lattice for the meeting scenario
discussed in Section 1. The basic situation shighNoise is identified by evaluat-
ing the noise degree sensed from the noise sensor and its logical description is
noise(conference room, greaterThan, 3). The context from the positioning
sensor is evaluated to identify the basic situation snp2: the number of current
people present is over two. The situation smCal will be true if there is a meeting
scheduled for now in a sensed calendar. The situations sprojOn and sspeOn will
be true if the projector and the speaker are turned on respectively.

A composite situation smeeting is used to evaluate whether a meeting is going
on, whose logical description is expressed as lmCal ∧ lnp2. The meeting situation
smeeting has two more specific situations: a group meeting sgm and a conference
meeting scm. Each of these situations has inherited the logical description from
smeeting and extended it with their particular descriptions. The logical descrip-
tion of a group meeting situation lgm = lmeeting ∧ lhighNoise ∧ lgp2, must satisfy
that from another two situations: the noise level is above the third level, and
there are at least two group members. The logical description of a conference
meeting lcm = lmeeting ∧ lprojOn ∧ lspeOn ∧ lnp10, must satisfy that from another
three situations: the projector and the speaker are in use, and there are more
than ten people present. Particularly, the situations sgp2 and snp10 are more spe-
cific situations relative to snp2. sgp2 inherits the number requirement on involved
people and extends them to the group identities of the people. snp10 simply con-
strains the number requirement on people present – at least ten people. In this
lattice, s1 is the unique top situation, and s0 is the unique bottom situation.

For any two situations in a situation lattice, the join situation is the most
specific situation among their more general situations, whose logical description
should contain the common part of their logical descriptions. The meet situation
is the most general situations among their more specific situations, whose logical
description should contain the conjunction of their logical descriptions.

In whole, the essential characteristic of this situation lattice is the ability to
represent situations of various degrees of generality. It explicitly represents the
inheritance relationships between corresponding constituents of those situations.

3.2 Analysis of Situation Lattices

Exploring Dependence Relationships Between Situations A dependence
relation between situations is discussed in most context modeling research (such
as the research of Gu et al. [13] and Henricksen et al. [7]. We use situation lattices
to capture this relationship.

The situation lattice is regarded as a specialisation structure with respect to
the generalisation if it is observed downwards from the top down. A situation
s ∈ S is more general relative to all its sub-situations. It also can be considered
as a dependence structure if it is observed upwards from the bottom. A specific



Fig. 1. Meeting situations in a situation lattice

situation can be decomposed into a few of more general situations. Its satisfia-
bility depends on the evaluation of the satisfiablity of all its immediately more
general situations.

In Figure 1, the satisfiability of a situation smeeting depends on that of its
component situations: smCal and snp2. The satisfiability of smCal and sgp2 de-
pends on that of s1. The top situation stores all the proper states of a system,
and it holds if a system is running properly. Conversely, the bottom situation
s0 stores all the improper states of a system, and it holds if there is anything
wrong with the system. Therefore, the bottom situation holds if inconsistent
situations are detected. For example, in a given place at a given time, s0 holds
if two situations sgm and scm are identified by the system.

Maintaining the Consistency and Integrity of Situations Context-aware
computing systems typically involve a large quantity of context, based on which
a huge number of situations can be created and specified. The question is: how
can situations be kept consistent and integral? Consistency means that logical
descriptions should be compatible between non-disjoint situations. For instance
in Figure 1, it is not possible for a logical description of a group meeting situation
sgm to conflict with that of a general meeting situation smeeting. Integrity means
that logical descriptions should not be satisfied by any two disjoint situations.
For example, the logical description that is satisfied by a group meeting sgm in a
room should not be satisfied by a conference meeting scm, or a lecture situation
slecture in that room at the same time.



Once the errors of inconsistency and non-integrity are detected at runtime,
the system designers will be forced to rewrite situation specifications. This repet-
itive checking and modification takes a lot of time, therefore, it would be advan-
tageous if these problems could be spotted and avoided when defining situations.
From the top situation, each of its immediately more specific situations should
not only satisfy logical descriptions of the top situation, but also contain logical
descriptions exclusive from that of other siblings. This checking will be conducted
recursively through the whole process of construction. According to Proposi-
tion 1, a new situation s is specified in a logical description: l =

∧m
i=1 li ∧ l∗,

where li is the complete logical description of one of its immediately more general
situation si. If l is evaluated to be false, then there is a part of l∗ conflicting with
li, which implies that s breaks the consistency requirement. The integrity will be
checked by comparing l with any logical description lj of its sibling situations. s
is considered as an acceptable situation if its logical expression is different with
that of its siblings: l (= lj .

Identifying Situations There are two ways of recognising a situation. Back-
ward chaining starts with a list of situations and works backward to see
whether the available context supports the requirements of any of the situa-
tions. Backward chaining is a typical mechanism used in current context-aware
computing. To identify a meeting situation, a system will collect all the percep-
tible context, for example, noise level and the number of people in this room.
If the context satisfies the conditions of a meeting situation, then it is identi-
fied. This backward chaining is useful only when a situation to be determined is
chosen beforehand.

In the situation lattice, the logical description is defined particularly for each
situation, and increasingly inherited from its general situations. Backward chain-
ing is carried out by evaluating this incrementally logical description with the
given context.

While in many real applications, where there are many possible situations,
it is not always practical to locate a situation beforehand. In this case, forward
chaining should be used: this starts with the acquired context and applies
inference rules to arrive at a situation. In this circumstance, faced with a large
number of inference rules, it is infeasible to find the rules that match a certain
situation by systematically checking each rule. It is necessary to find out a way
of reducing the computational load and locating a situation efficiently. In the
situation lattice, situations can be shared which avoids repetitive evaluation of
situations. The forward chaining does not have the problem of infinite loops in
the situation lattices either.

The situation lattice will be suitable for the forward chaining. A system
starts by identifying basic situations from the given set of context. Only the
logical description l∗ particular to a situation will be checked, rather than its
complete logical description. If the description is satisfied, the satisfied context
will be removed from the original given context set and the chaining will continue
checking its more specific situations. In this way, only the minimum descriptions



will be evaluated every time without repetition, and the given context set is
reduced continually. This will reduce the computation load and improve the
efficiency. When a set of most specific situations {si, . . . , sk} are located, the
target situation is the join of all these situations.

4 Situation Lattices and Uncertainties

When dealing with real-world context data, there is no guarantee that situations
will be identified with complete certainty. The uncertainty of context is subject
to sensor failure, noise, delays, disconnected sensor network, infrequent update
in response to changes [7]. Context is considered uncertain, if it is

– incomplete, when some information is unknown or missing. There may not
be enough evidence to determine a the correct situation;

– imprecise, when the resolution of the context cannot satisfy the requirement
of applications;

– conflicting, when there are several inconsistent pieces of information from
different sources, which may result in multiple disjoint situations being de-
termined;

– incorrect or meaningless, when the information is erroneous compared to
the actual state or reality, which may result in an incorrect situation being
determined;

– and out-of-date when the information is stale and is not updated in response
to changes, which may result in an incorrect situation being determined.

Many of these uncertainties are amplified when using inference rules to rea-
son about context, as well as the typical insensitivity of rules to noisy inputs.
Another concern is the difficulty in defining and maintaining accurate inference
rules. These uncertainties can result in incomplete, inconsistent, and incorrect
situations being identified, especially when dealing with real-world context.

4.1 Coarse-Grained Approach to Resolving Uncertainty

A coarse-grained approach is introduced to resolve uncertainties with respect
to the characteristics of a lattice. Compared to a specific situation, a general
situation has fewer or looser requirements (or conditions). The general situation
can be extended to more specific situations by adding requirements in its logical
description (e.g., from snp2 to sgp2), tightening the constraints (e.g., from snp2

to snp10), or uniting with other situations (e.g., from ssp and snp10 to ssp10). If
some context is too incomplete to support a given situation then this situation
cannot be identified. However, its general situations will be checked until the
context is satisfied by a situation. Therefore, when a system fails recognising a
specific situation, it can loosen the requirement to locate a more general one.
If the context is conflicting to each other, it generates some disjoint situations.
These situations satisfy different conditions that are difficult to determine which
is proper, while the conditions satisfied by all of them are considered correct.



As a result, the join of these disjoint situations will be returned to resolve the
inconsistent uncertainty.

The system is kept stable using the coarse-grained approach because it al-
ways tends to choose the inviolable situation, even though this is not always
the most appropriate situation. In the pathological case, when all of the derived
disjoint situations are conflicting, the join of them is the most general situation
s!. That implies the system does not detect any situation and will not take
any particular behaviour, so it is considered insensitive to situations or context.
However, among the disjoint situations, if uncertainties of context were incor-
porated into the lattice, it might be appropriate to select the situation with the
highest degree of confidence. The system should then carry out the behaviours
specified for that situation. This responsive system is more suitable for real-world
applications. Consequently, we propose a fine-grained approach to quantify the
confidence of generated situations, which helps to determine the situation that
is most likely to occur.

4.2 Fine-grained Approach to Resolving Uncertainty

The typical fine-grained approach attempts to quantify the uncertainties under-
lying situations using probabilities. These probabilities attempt to capture the
uncertainty caused by imperfect context and error-prone deriving mechanism.
The situation lattice represents the dependence relationship between situations,
so a promising approach is to represent the probabilities on both situations
and dependence relationships and then reason on them with these probabilities.
Bayesian Networks have a causal semantics that encode the strength of causal
relationships with probabilities [6].

Bayesian networks are usually used to calculate the probabilities for decision
making under uncertainty. A Bayesian network is a directed acyclic graph in
which each node represents a variable that can be discrete or continuous, and
each arc is the causal relationship between nodes. If there is an arc from a node
A to another node B, then A is called a parent of B, implying that the variable
B is regarded depending directly on A. If a node does not have a parent, then
it is called root. Each root node is associated with an a priori probability. Each
non-root node is associated with a conditional probability distribution (CPD).
If the variables are discrete, then the CPD is represented with a conditional
probability table (CPT) given all possible combination of their parent nodes:
p(x | parent(x)), where parent(x) is a parent set of a node x.

It is obvious that a situation lattice has a very similar structure to a Bayesian
network. The lattice can be converted to a Bayesian network in a straightforward
manner: each node in a Bayesian network corresponds to a situation, and each arc
to a dependence edge. In this Bayesian network, the root nodes are considered the
basic situations that are immediately under the top situation s!. After building
the graphical model of Bayesian network, we will assess the prior probability
for each root node and the conditional probability for each non-root node. The
Bayesian probability of an event is a degree of belief in this event [6] and it can
be obtained from the domain expert or observations.



Considering the uncertainty and dynamism, the probabilities will be evalu-
ated by training a set of real data. For the probability of a root node, a simple but
straightforward approach is p(ω) = N ′

N , where N ′ is the times that a certain state
ω takes place and is recognised, and N is the total number of observations. To
simplify the computation, it is assumed that the structure of the model is known
and the full observations are possible, so the maximum likelihood estimate [9] is
applied for the conditional probability distribution. For each non-root node s,
one of its discrete state is written as ω, its parent nodes are s1, . . . , sn, and one
of its conditional probability is calculated as follows:

p(s = ω | s1 = ω1, . . . , sn = ωn) =
N(s = ω, s1 = ω1, . . . , sn = ωn)

N(s1 = ω1, . . . , sn = ωn)
, (1)

where N(s = ω, s1 = ω1, . . . , sn = ωn) is the number that s is recognised in
one of its states ω, and all of its parents are in one of its own states ωi; and
N(s1 = ω1, . . . , sn = ωn) is the number that all of its parents are in one of its
own states ωi. In a meeting scenario example in Figure 1, the prior probability
of a root situation snp2 is 0.74. For the group meeting sgm, one of its conditional
probabilities p(sgm = true | shighNoise = low, smeeting = true, sgp2 = true) is
0.87. When the noise level is sensed lower than the third level, the meeting situa-
tion takes place, and more than two group members are located, the probability
of a group meeting is 0.87.

Bayesian inference is the process of updating the probabilities based on the
relationships in the model and the recent evidence. The new observation is ap-
plied to the model by assigning a variable to a state that is recognised from
the observation. Then the probabilities of all the other variables that are con-
nected to this variable will be updated. The new probability is called posterior
probability that reflects the new levels of belief.

Under the conditional independence assumption, the joint probability distri-
bution is applied to compute the probability of the resultant situations given the
causal situations: p(si = ω) =

∏n
k=1 p(sk | parent(sk)). For example, if the situ-

ations snp2 is recognised true and smCal is recognised true, and other situations
are uncertain, then the probability of a meeting situation smeeting is 0.98, and
that of a group meeting situation sgm is 0.64.

With Bayesian networks, a system will not only return a more general situa-
tion through the above coarse-grained approach, but it will also return a specific
situation with the highest possibility. If the highest possibility is beyond the
threshold that is specified by a system, the behaviours corresponding to that
situation will be carried out.

Up to now, we assume that the Bayesian network is operating on a closed
world, with a structure that is known a priori. However, in a real-world context-
aware system this structure may not be known or will change over time as sources
of context are added and removed by the environment. The assumption that
inputs are certain is also unrealistic given the inherent uncertainty of context
data [7]. The promise of using Bayesian networks with situation lattices is that



they could be used to learn the underlying structure of situations, which would
make it possible to reconfigure the situation lattice.

5 Conclusion and Future Work

As situations become more and more important, system designers tend to specify
a large number of rules to identify various situations in an ad hoc way. An
efficient approach is expected to organise and manage these situations so that
their specifications maintain the consistency and integrity requirements. This
paper applies a formal structure using lattice theory to organise situations.

The situation lattice reflects the generalisation relation of situations and
captures the dependence between situations. We believe it will be helpful when
maintaining the consistency and integrity of situations, however, the involved
computation may be huge when faced with lots of situations. This paper only
presents a simple situation lattice with a limited number of situations, while we
will attempt to design an algorithm to make the checking procedure scalable and
efficient. The situation lattice will also be beneficial when identifying the situa-
tions using backward and forward chaining approaches. However, the situation
lattice only reflects the static structures of situations. We have discussed the
dynamic evolution of situations with a fibration theory in earlier work [4]. In the
future, we will investigate how situation lattices and fibrations can be made to
work together. Chu Space [17] is anther interesting worth studying, which may
be useful for exploring the temporal order between situations, and for preserving
situations’ structures during the dynamic evolution.

In dealing with the issue of uncertainty, the situation lattice supports a
coarse-grained approach and a fine-grained approach by working with Bayesian
networks. Bayesian networks work well if situations are limited to a small num-
ber, and if the context sources are relatively fixed. (Gu et al. [5] and Ranganathan
et al. [10] have successfully applied Bayesian networks to deal with uncertainties
in contextual reasoning.) However, this assumption is contradictory to the na-
ture of context-aware computing systems. A system may contain thousands of
situations so as to satisfy various kinds of customised applications. If a non-root
situation node has m parent situations, then the size of its conditional probability
table is 2m× (m + 1) (if each variable has only two discrete states). Considering
the complexity of situations, the computation of conditional probability tables
will be large.

For the acquisition of context, context-aware systems should watch all the
potential context in the environment. This is a big issue when applying these
systems in reality, and potentially not solvable at the current research stage.
In these environments, new context sources often enter and leave. This frequent
churn in context sources will quickly render the original Bayesian network useless
and require the system to frequently retrain itself. If there are a large number of
nodes in the Bayesian network, the cost of training will be prohibitive. What’s
more, if learning the structure of nodes is required, the NP-hard problem under-
lying the Bayesian network will become an obstacle [2].



Considering the above disadvantages, we will design the algorithms to opti-
mise the performance of Bayesian networks based on the particular characteris-
tics of context-aware computing systems.

References

1. G. Birkhoff. Lattice Theory. Providence, R.I. : American Mathematical Society,
3rd ed edition, 1967.

2. E. Charniak. Bayesian networks without tears: making bayesian networks more
accessible to the probabilistically unsophisticated. AI Mag., 12(4):50–63, 1991.

3. P. D. Costa, G. Guizzardi, J. P. A. Almeida, L. F. Pires, and M. J. van Sinderen.
Situations in conceptual modeling of context. In EDOC 2006 workshop proceedings,
pages 6–16, October 2006.

4. S. Dobson and J. Ye. Using fibrations for situation identification. In T. Strang,
V. Cahill, and A. Quigley, editors, Pervasive 2006 workshop proceedings, pages
645–651. Springer Verlag, 2006.

5. T. Gu, H. K. Pung, and D. Q. Zhang. A Bayesian approach for dealing with
uncertain contexts. In Procs of Pervasive 2004, 2004.

6. D. Heckerman. A tutorial on learning with bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, Redmond, Washington, June 1996.

7. K. Henricksen and J. Indulska. Modelling and using imperfect context information.
In Procs of PERCOM’04, page 33, 2004.

8. S. W. Loke. Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective. Knowl. Eng. Rev., 19(3):213–233,
2004.

9. K. Murphy. A brief introduction to graphical models and bayesian networks.
http://www.cs.ubc.ca/ murphyk/Bayes/bayes.html, 1998.

10. A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell. Reasoning about uncer-
tain contexts in pervasive computing environments. IEEE Pervasive Computing,
03(2):62–70, 2004.

11. B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In
IEEE Workshop on Mobile Computing Systems and Applications, 1994.

12. D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji, K. Reiger,
J. Shaffer, and F. L. Wong. Sensay: A context-aware mobile phone. In Procs
of the 7th IEEE ISWC, page 248, 2003.

13. Tao Gu and Xiao Hang Wang and Hung Keng Pung and Da Qing Zhang. An
Ontology-based Context Model in Intelligent Environments. In Procs of CNDS
2004, pages 270–275, January 2004.

14. G. Thomson, S. Terzis, and P. Nixon. Situation determination with reusable situ-
ation specifications. In PerCom 2006 Workshop Procs, pages 620–623, 2006.

15. W. A. Woods. Taxonomic lattice structures for situation recognition. In Proceed-
ings of the 1978 workshop on Theoretical issues in natural language processing,
pages 33–41, 1978.

16. S. S. Yau, D. Huang, H. Gong, and Y. Yao. Support for situation awareness
in trustworthy ubiquitous computing application software: Papers from compsac
2004. Softw. Pract. Exper., 36(9):893–921, 2006.

17. G.-Q. Zhang. Chu spaces, concept lattices, and domains. Electronic Notes in
Theoretical Computer Science, 83, 2004.


