
Towards Scatterbox: a Context-Aware Message
Forwarding Platform!

Stephen Knox, Adrian K. Clear, Ross Shannon, Lorcan Coyle,
Simon Dobson, Aaron J. Quigley, and Paddy Nixon

Systems Research Group, School of Computer Science and Informatics
UCD Dublin IE

stephen.knox@ucd.ie

Abstract. Context-aware systems that rely on mobile devices for user interaction
must address the low bandwidth of both communications and more importantly
the user’s limited attention, which will typically be split between several com-
peting tasks. Content delivery in such systems must be adapted closely to users’
evolving situations and shifting priorities, in a way that cannot be accomplished
using static filtering determined a priori. We propose a more dynamic context-
driven approach to content delivery, that integrates information from a wide range
of sources. We demonstrate our approach on a system for adaptive message pri-
oritisation and forwarding.

1 Introduction

Rich sources of context data are an integral part of building intelligent pervasive com-
puting applications. Central to pervasive computing is the notion that “technology re-
cedes into the background of our lives” [1]. The classical view of human-computer in-
teraction needs to be extended to include both a cloud of interoperating heterogeneous
electronic devices and the ability to interact with one or many when and wherever de-
sired. This extended view requires that disparate devices are able to interoperate easily.
This supports enhanced interactions with the user which break away from traditional
distribution channels, reaching the user through whichever device they currently have
available. As small mobile devices with built-in wireless capabilities such as mobile
phones and PDAs become more widespread, they present an ideal opportunity to afford
ubiquitous communication services to the user.

Advances in technology in recent years have meant that computing devices have
become cheaper, smaller, and more powerful. Mobile devices including mobile phones
and PDAs are constantly increasing in utility through the addition of extra sensory
equipment like gyroscopes, accelerometers and GPS receivers. In addition, communi-
cation devices are beginning to be embedded into everyday objects such as toys, refrig-
erators and coffee cups [2, 3]. Each of these advances expands both the opportunities
! This work is partially supported by Science Foundation Ireland under grant number 05/RF-

P/CMS0062, “Towards a Semantics of Pervasive Computing.”, grant number 04/RPI/1544,
“Secure and Predictable Pervasive Computing.”, grant number 03/CE2/I303-1, “LERO: the
Irish Software Engineering Research Centre.”, and by an EMBARK Scholarship from the Irish
Research Council in Science, Engineering and Technology.



for the delivery of ubiquitous communication services but also increases the system
complexity in coordinating this cloud of devices.

With the tremendous increase in available contextual data, a context-aware system
can determine many facts from the environment that can inform its behaviour e.g., who
is present, or what task they are performing. An example of this is a smart meeting
room that manages shared projectors [4], or a smart room for elderly people which
detects incidents such as falls and reacts to them quickly [5]. These decisions can only
be made if there are enough data, of sufficient fidelity, to support them. Therefore there
must be many sensory devices, each providing differing inputs, that each contribute
to the knowledge of the system as a whole. These devices will often go unnoticed by
the user, but they provide valuable information about the user’s surroundings and the
context of their activities.

We define “context” as any aspect of the environment of a system understood sym-
bolically – or, more concretely, as a measurable component of a given situation. By
“situation” we mean a certain composition of various simple and derived contexts that
gives rise to pervasive services. These contexts may be simple metrics which can be
investigated with instruments, such as a time context (e.g. 18:48 GMT), a location con-
text (e.g. Coffee Area) or a user context (e.g. Bruce), but also range to more complex
computations such as a user’s current social context, meaning the other users that they
are sharing a space with.

A central challenge for pervasive computing is to integrate contextual information
in order to best recognise and service the changing situation. Since individual sources
of context are inherently error-prone, this cannot be accomplished by focusing on any
one source but instead requires a fusion-based approach that can integrate all available
information, giving due weight to the fidelity of each source.

This paper describes an approach to situation awareness being prototyped in a sys-
tem we call Scatterbox, a “moving letterbox” that delivers relevant messages to a user’s
mobile device based on the context derived from sensors within a pervasive comput-
ing environment. The goal of this system is to take multiple, heterogeneous sources of
contextual data, and extrapolate the situations that they map to. The characteristics of
these situations define whether an appropriate action should be taken — and so whether
a certain message should be delivered to a user’s phone or PDA, limiting distraction by
only sending messages that are timely and relevant. In accordance with the study done
by Oulasdvirta et al. [6] on the “drastically short term” limited attention span of mobile
users, Scatterbox provides short, concise messages requiring minimal attention.

The system we propose monitors a user’s e-mail inbox and dynamically forwards
messages to him, depending on his situation. This means that he will be notified of the
receipt of only important e-mails or messages relevant to his current task when he is
in a certain situation, while all other messages will be stored as normal in his e-mail
inbox. This provides a tangible demonstrator of a real-time pervasive system which is
constantly adapting to changes in the user’s situation.

The remainder of the paper is organised as follows. Section 2 describes related
research in the area of contextual message forwarding. Section 3 contains a formal
description of our approach to the composition of context into situational awareness.
Section 4 describes our context acquisition and reasoning methods using a contextual



framework, while Section 5 describes how our Scatterbox system has been implemented
to work in a physical location. Section 6 outlines our proposed evaluation that will be
performed to test the efficacy of Scatterbox using real messages, real users and real
context. In the final section, we offer some conclusions and plans for future work.

2 Related Work

Standard message delivery systems such as email and SMS do not take the user’s con-
text into account, and can make it difficult for a user to prioritise inputs, as well as
lead to irritation due to unnecessary disruption. Context-awareness can be used as an
effective augmentation of existing message delivery systems. Filtering messages using
context can be used as a means to decrease the disruption that message delivery can
cause to a user. This approach to message delivery has the potential to become the
cutting-edge in messaging, self-organisation, and content filtering.

Multiple approaches to context-aware message delivery have previously been ex-
plored. The Stick-e note architecture [7] is one of the earliest of these. Stick-e notes can
be messages or other objects which have contexts attached to them. This architecture in-
corporates the user’s physical environment into service delivery; the principle contexts
used are location and time. The notes may be stored on a user’s PDA or a static device
like a desktop PC. The message or object gets delivered to a user only when they enter
the context that is attached to the object. For example, users may be reminded that they
have to return a book to somebody when they are at their bookshelf and in the presence
of the person from whom they borrowed the book.

Nakanishi et al. [8] proposed the Context Aware Messaging Service that uses sched-
ule information, location information and available media to send an incoming message
(or call) to users using an appropriate protocol and device. This system uses context to
determine whether the message should be sent using e-mail, SMS, and so on, and what
device it should be sent to. The authors performed an evaluation of a two month exper-
iment in Tokyo. The results suggest that the use of context to determine what device a
message should be sent to made the retrieval of messages more convenient. It also made
users feel comfortable to know that another user would not be disturbed by a message
if the timing was inappropriate.

Context-aware adaptation has also been introduced to applications with the goal of
reducing a user’s distractions. Miller et al. [9] leverage the Aura Contextual Information
Service in order to build distraction-free context-aware applications. In their example,
urgent messages should be sent using SMS or IM depending on the situation.

Ho et al. [10] also propose the use of context in order to prevent the user from being
interrupted by messages, calls, etc. at inappropriate times. They list 11 factors which
influence a person’s interruptibility at a given moment and complete a user trial which
shows interesting results. People are less likely to be disrupted when they are between
activities (e.g., between a meeting and going to lunch).



3 Foundations of Context-Awareness and Adaptive Behaviour

The notion of context is key to context-aware computing, and a universally accepted
definition has been difficult to realise. Yau [11] defines context as “any instantaneous,
detectable and relevant property of the environment, the system or users”, which is
similar to, but more general than, Dey’s [12] definition that context is “any information
that can be used to characterize the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a user and an application,
including the user and applications themselves”. Henricksen [13] proposes to make a
distinction between the concepts of context and context modelling in order to achieve
consensus and precision:

– “The context of a task is the set of circumstances surrounding it that are potentially
of relevance to its completion.”

– “A context model identifies a concrete subset of the context that is realistically
attainable from sensors, applications and users and able to be exploited in the ex-
ecution of the task. The context model that is employed by a given context-aware
application is usually explicitly specified by the application developer, but may
evolve over time.”

We aim to take a step further and formalise the notion of context based on the above
definitions. The motivation for such a formalism is the need to derive an appropriate
means to model context. From Yau’s mention of the properties of the environment;
Dey’s mention of information about an entity; and Henricksen’s mention of the more
general term “circumstances”, we propose to capture the structure of context in a tuple
containing a subject, predicate and object. We can then view a predicate as a means to
relate properties, information, or circumstances to an entity. Thus, we can express any
detectable or realistically attainable facts relevant to the completion of a task.

Definition 1. A context is a tuple containing a subject, predicate and object (s,p,o) that
states a fact about the subject, where

1. The subject is an entity in the environment.
2. The object is a value or another entity.
3. The predicate is a relationship between the subject and object that defines the do-

main of the object.

A context may be either a constant or a variable. A constant context must take on a
single value from a domain. A variable context may take on values from a domain. The
value of a variable context may change over time, while the domain stays the same.

An environment of a context-aware system can be viewed as a finite number of con-
stant and variable contexts. The values that a variable context may attain come from a
well understood domain of variable types including nominal or categorical e.g., times
of year {Summer, August,. . . }, ordinal, quantitative, interval e.g., temperature range
{-32, +32}, and ratios. The domain of an object captures the “type” of information,
property or circumstance that we may legally relate to the subject using a particular
predicate.



Context is very fine-grained for use in developing complex adaptive applications,
as it is typically a low-level interpretation of raw sensor data. When defining adaptive
behaviour, we consider a holistic view, using situations, rather than the combination of
individual bits of context data. A situation is a natural abstraction of context data, pro-
viding more realistic points to associate adaptive behaviour with. For example, imagine
that a user, Bruce, in a lecture theatre, has a slide set open and there are 35 other people
in the room. Bruce is at the front of the room and is talking. This presents a lot of con-
textual data for us to comprehend in parts, but a context-aware system should be able
to condense it and infer that the current situation is a “presentation”. Often individual
component contexts may change but the situation will be maintained. Other situations
will be labeled “meeting”, “lunch”, etc. This view of contexts and situations proves to
be quite versatile.

In order to define situation, we firstly define situation space. Given that each predi-
cate restricts an object to a particular domain, we can define the set of variable contexts
A with common subject sa and predicate pa as A : 〈sa, pa, oi〉 for all oi ∈ Di, where
Di is the domain of oi. Given two or more sets of contexts, we can define their situation
space as the Cartesian product of the sets as follows.

Definition 2. Given the sets of contexts A : 〈sa, pa, o1〉, B : 〈sb, pb, o2〉 . . . Z : 〈sz,
pz, on〉 for all oi ∈ Di, where Di is the domain of oi, we can define the situation
space AB . . . Z as the set {(a1, b1 . . . , z1), (a1, b1 . . . , z2) . . . (am, bn . . . , zp)} where
a1 . . . am ∈ A, b1 . . . bn ∈ B . . . , and z1 . . . zp ∈ Z.

A situation space thus captures all possible combinations of two or more contexts. We
can thus define a concrete situation as a subset of a situation space.

Definition 3. A situation is a subset of a situation space.

Given a situation space AB defined over the variable context sets A and B, we can de-
fine the situation AB1 as {(a1, b1), (a3, b2)}. Situations themselves may be used in the
construction of more complex situations. For completeness, a base behaviour should
be provided in order to cover all possible circumstances. For a more concrete example,
imagine we have the context sets over the domains Months and Weather. We can de-
fine the situation space for Weather×Month and define situations like SummerSun
or SpringWind.

Adaptive behaviour is achieved by creating points in the system called adaptation
points. When one of these is reached, the system exhibits a corresponding behaviour.
An adaptation point could be as simple as a context variable taking on a certain value or
as complex as an elaborate situation composition. In general, we are selecting states of
the system where something useful should happen. We may wish to set a user’s phone
profile to silent when she is in a meeting, for example, or set her Instant Message (IM)
status to away when she is out on lunch.

4 Context Acquisition and Modelling

A context-aware system collects relevant context data from the environment and then
acts appropriately based on this information. Our context-aware applications are built



on top of Construct [14], a distributed fully decentralised open-source platform support-
ing the building of context-aware, adaptive, pervasive and autonomous systems1. Such
systems interact through manipulation of a common data model rather than through the
piecing together of services. Construct provides applications with a uniform view of
context information regardless of how it was derived. Construct takes care of collating
and distributing context data around a network. Applications can then query the nearest
Construct node for data that their service relies on.

4.1 Sensors

Sensors are used to gather context data from the environment. We have categorised our
sensors into two types: physical and virtual. Physical sensors directly detect character-
istics of the environment e.g., sensors for location data obtained from Ubisense2 and
Bluetooth spotters. Virtual sensors obtain information from the Internet, local network
or local computer, e.g., sensors for obtaining calendar information, monitoring com-
puter activity and collating syndicated data feeds.

In this project we utilise the following physical and virtual sensors:

– Ubisense Location Sensors poll a Ubisense location tracking system which has
been set up throughout our research lab and tracks special tags that users can carry
around with them. The sensor calculates the x, y, and z coordinates of an individual
with a peak granularity of 30cm in 3D space.

– Bluetooth Location Sensors poll for a user’s designated Bluetooth-enabled device.
A number of statically positioned “base stations” have been positioned throughout
the lab. Due to Bluetooth’s limited range, the set of static devices within the system
which can connect to a mobile Bluetooth device allow us to infer a range of possible
positions for the device.

– Calendar Sensors monitor a list of published iCal and vCal calendars for data
about a user’s appointments and location (e.g. room number) and availability for a
period of time (e.g. during the next week).

– Computer Activity Sensors determine whether an individual is located at a com-
puter by checking if they are logged-in and active at that terminal.

Data from each of these sensors is fed into a connected Construct node, from where
it is disseminated to other nodes in the system. The Construct middleware is being
complemented by the development of an uncertainty framework [15]. This performs
aggregation of context and deals with inconsistencies that may arise when the same
type of data is produced from different sensors (e.g., location sensors providing data
that says a person is in two places at once).

4.2 Modelling Context, Situations and Behaviour

In order for the heterogeneous nodes running Construct to be able to interpret and com-
municate about context and situations, we need a means to model them.

1 The Construct home page is located at http://construct-infrastructure.org/
2 Learn more about Ubisense at http://www.ubisense.net/



We model context and situations as ontologies in the Web Ontology Language
(OWL)3. Our reason for choosing OWL is that it fits our mathematical description of
context and situations from Section 3 most appropriately. Entities and context categories
are modelled as OWL classes. Their attributes correspond to context variables and con-
stants from the previous section. For example, the Person class has constants such as
name and e-mail and variables such as location. In order to create a person, an instance
(or individual in OWL terminology) is made of this class and values are assigned to its
attributes. Variable contexts may be changed frequently and timestamped by sensors.

We create situation spaces as OWL classes in a similar way. Their attributes are the
context variables or constants which the space encapsulates. In order to create concrete
situations, we create instances of the situation spaces by assigning values or intervals to
the contexts. This is similar to composing context variables and creating a subset of the
resulting situation space as described in the previous section.

Adaptation points can be viewed as augmented virtual sensors which consist of a
context or situation and a corresponding behaviour. The virtual sensors asynchronously
poll Construct to monitor whether their situations have been realised. They then execute
their behaviours and possibly introduce more contextual information into the network.
The prescribed behaviours may require context information to function e.g., if we wish
to route a message to a user, we must first choose a device, using location information,
to send it to. As mentioned in Section 3, for completeness adaptation points should be
specified for all subsets of a situation space. One means to approach this requirement
is to introduce a default behaviour on a subset of a situation space and specialise the
behaviour for other, more significant subsets.

The expressiveness of our mathematical model for situations leads to some prob-
lems regarding conflict, however. By allowing situations to be composed of other situa-
tions, and adaptation points to be defined on elements as fine-grained as individual con-
texts, we must decide what behaviour the system should exhibit in occurrences where
situation definitions overlap. Some possible approaches to this problem are given in Ye
et al. [16].

5 Scatterbox

In order to demonstrate our approach to situation determination and use of context in
pervasive systems, we are developing Scatterbox, a context-aware message forwarding
platform. Scatterbox forwards certain incoming e-mails to users in a pervasive environ-
ment based on their context. The user’s context is found by tracking his location and
monitoring his daily schedule. This context data is accessed through Construct, and sit-
uations are identified based on this data. As messages arrive, Scatterbox forwards them
to subscribed users should their situation warrant it.

We now describe in detail how Scatterbox is implemented. We illustrate the situa-
tions and behaviours that the application uses, describe our mode of message delivery,
and show the use of the application with an example case study.

3 The OWL specification is located at http://www.w3.org/TR/owl-features/



5.1 Situations and Behaviour

The situation spaces that we use for Scatterbox are EmailRelevance, Meeting, and Pres-
enceAtInbox. EmailRelevance is dependent on factors such as the situation of the user,
the sender of the e-mail, the e-mail content and the user’s calendar information. In order
for Scatterbox to know when a situation has occurred, it must poll Construct regularly
for newly acquired context, and match the new context to the situation spaces.

For the Scatterbox application, we need only define one adaptation point, relevan-
tEmail, which reacts by sending a summary message to the user’s Bluetooth device.
This behaviour can be defined as sendMessage(user, msg). This command can be en-
tered into Construct, distributed, and picked up by a node within range of the user’s
Bluetooth device. An application running on the Construct node then sends the mes-
sage to the device.

5.2 Message Delivery

Bluetooth wireless technology is built into most devices that we carry around every
day, like mobile phones, PDAs and other portable devices, which means Scatterbox is
transparent, reliable, and scalable.

Transmission of messages is accomplished through Bluetooth’s Push protocol. The
Bluetooth capabilities of most mobile phones and similarly-powered devices are typ-
ically limited to a transmission range of approximately 10 metres. Each device can
be uniquely identified within the system. If a user’s Bluetooth device is in range of a
Bluetooth-enabled Construct node, a message can be routed to the node and pushed to
the mobile device. The message can then be accepted or rejected by the user. In Sec-
tion 6 we show how we will use this acceptance or rejection to drive our evaluations.

5.3 Use case

Consider the case of Bruce, a user who has a meeting scheduled after lunch with one of
his students. The meeting is to take place in his office, and Bruce is currently upstairs in
the coffee area having lunch with one of his colleagues. The system’s contextual inputs
at this point are:

– The current time of day.
– Schedule information from Bruce’s calendar application (which includes both the

time it takes place and the room it takes place in).
– Bruce’s current position in the building.

Many calendaring applications will offer the ability to e-mail the user a reminder
of an appointment such as this meeting before the meeting is to take place. However,
in this case an e-mail reminder will be of no use, as Bruce is not near his computer.
Scatterbox routes messages that would normally arrive in a user’s e-mail inbox to their
mobile device, if they are away from their computer and the message is deemed to
be contextually relevant by the system. In the case of calendar appointments, it is not a
requirement that an e-mail with an appointment reminder is received; the user’s calendar
is sufficient, as contextual data can be extracted from it directly.



Shortly before a meeting is scheduled to occur, the system will query Bruce’s loca-
tion. When it notices he is not in the prescribed location, a message will be pushed to
his phone to remind him of the meeting.

Variants of this situation that would not lead to a message being sent would be:

– had Bruce been in his office at the time the meeting was to start.
– had the student that Bruce was to meet also been up in the coffee area at the time

the meeting was to start. In this case a message will not be sent, as Bruce’s social
context overrides the location information.

5.4 Situations in Scatterbox

To demonstrate how contextual information can be collected about Bruce, we will use
the sensors mentioned in Section 4.1. Each sensor is modelled using an ontology, which
describes how that sensor’s data should be interpreted. This gives uniformity to the data
within the system, so in the event of a query like: “What room is Bruce in?”, it is a
simple matter of making a single query based on the location ontology, rather than
multiple queries for each separate type of sensor data.

Scatterbox continuously seeks context data using queries such as the following:

– Select last location of Bruce.
– Select upcoming entries from Bruce’s calendar.
– Select sensor readings from Bruce’s computer activity sensor.

Bruce’s situation can be determined from the responses to these queries. For exam-
ple, a Construct node could return:

– “Boardroom, 3.02pm”
– “Meeting with head of school, Boardroom, 3.00pm”
– “Inactive”

From these results, it is inferred that Bruce is in a meeting and not in his office. He
therefore should only be sent a message if it is classified as being important, relative to
his situation.

Every situation is defined by the following criteria: the values context data must
hold for the situation to be realised, and the resultant behaviour. We allow the user to
define their own message filters, which take the form of standard e-mail filters, such as
filtering by sender, recipient, or keywords. For message classification, Scatterbox takes
an approach based on common spam filtering techniques, such as white-lists, black-
lists, and simple keyword classification. These filters are entered into Construct in the
form of RDF. From that point on, they are viewed by Construct as being additional
context data.

The data going into Construct is checked against a set of ontologies. This piece of
data can then be associated with something in the environment. In the case of a Blue-
tooth reading, the datum is seen to be an attribute of a Bluetooth device. This Bluetooth
device ontology is associated with the Person ontology with the hasCellPhone rela-
tion. These relations allow Scatterbox to see whether a person is in the environment,



Fig. 1. An example of how ontologies are traversed.

where they are, and consequently determine their situation. This traversal of ontologies
is illustrated in Figure 1.

Following on from the example above, Bruce must define how Scatterbox is to
decide which messages are appropriate for each situation. This involves naming a sit-
uation and stating who he would accept messages from in that situation. An empty list
implies no messages should be delivered. Secondly, he has the option of defining a set
of keywords which have to appear in incoming messages for them to be deemed impor-
tant enough for delivery. Finally, Bruce defines which criteria indicate a situation. He
does this by creating instances of situation spaces in an ontology editor, for example, as
described in Section 5.1.

From this point on, Scatterbox scans incoming e-mails and, using keyword classifi-
cation, assigns e-mails to particular situations. It is assumed that the user will already
have adequate spam protection preventing unwanted messages from reaching their e-
mail inbox.

6 Evaluation

In order to evaluate Scatterbox’s effectiveness in using context to determine which mes-
sages to forward, and the accuracy and usefulness of these messages, we have designed
a user test. This is a more complex problem than standard spam filtering as we assume
that context determines the level of tolerance a user has at any time for reading a mes-
sage. We believe that given the situation, the willingness of a user to read a message
changes in a predictable manner [10]. Therefore an evaluation of this system must ac-
count for the context that was used to support the decision to pass the user a message.

We will perform the evaluation with a number of real users and their real e-mail.
The transactions take the following form: messages are sent to the user via Bluetooth’s
Push protocol. The user’s phone then gives them the option of accepting the message
or rejecting it. This user feedback is logged by the Scatterbox application running on a
Construct node. The feedback is then used to determine the appropriateness of Scatter-
box’s decision to send the message to the user.

Our evaluation will estimate the utility of context-aware message filtering by quan-
tifying both the number of unwanted messages that are sent to a user (false positives),
and the number of important messages that are not sent to the user (false negatives).
Feedback elicited from rejection of unwanted messages indicates false positives, but an
alternative approach is needed to account for false negatives (messages which should
have been sent but were not). For the purposes of evaluation we capture this form of



feedback by occasionally sending messages to the user that Scatterbox does not believe
the user will want to see. Our evaluation will count rejections of these messages as
true negatives (and thus appropriate behaviour) and acceptances of these messages as
false negatives (i.e., inappropriate). We believe that it is more important for Scatterbox
to avoid false positives than false negatives — since the user will always check their
inbox eventually — and that our evaluation will bear this out. (Interestingly this is the
opposite of what one would expect from the perspective of spam filtering.)

Further to performing a live evaluation, we propose to amass a data set of real con-
text and behaviours over the course of this user test and use this to perform a number
of offline evaluations. By gathering all relevant context features with Scatterbox’s de-
cision to send messages and the user’s feedback, we will be able to investigate which
features were most important in predicting correct behaviour using simple feature se-
lection [17]. By examining how changes in context affect situation and behaviour, we
will be able to examine the ability of Scatterbox to consistently and smoothly respond
to its environment.

7 Conclusions and Future Work

We developed a system, Scatterbox, that determines a user’s situation by composing
numerous sources of contextual data. This system can then intelligently forward useful
messages to a user’s mobile device based on their current situation. These messages
comprise both important e-mails that the user has received while they were away from
their computer, and also contextual notifications of important events, such as meeting
reminders derived from the user’s calendar. The system notices changes in a user’s
situation, and reacts accordingly.

Scatterbox was created using a context infrastructure (Construct), which has been
used for context reasoning in many other application areas, such as in location aware-
ness for health care [18], smart homes [19], and recommender systems [20].

We have also designed an evaluation of this system, which uses the rate of rejection
of messages to determine whether the system classified the situation correctly and if it
acted appropriately.

The next step in Scatterbox’s development is the addition of Machine Learning tech-
niques to correct its distribution algorithms in a similar way to that done by intelligent
spam filtering techniques. Research is also ongoing regarding the use of truth mainte-
nance to reduce the need for continually resolving recurring inconsistencies within a
data store.

References

1. Mark Weiser. The Computer for the 21st Century. Scientific American, 265(3):94–104,
September 1991.

2. Emmanuel Munguia Tapia, Stephen S. Intille, Louis Lopez, and Kent Larson. The design of
a portable kit of wireless sensors for naturalistic data collection. In 4th International Con-
ference on Pervasive Computing, Dublin, Ireland, May 7-10, 2006, pages 117–134, 2006.



3. Lars Erik Holmquist, Friedemann Mattern, Bernt Schiele, Petteri Alahuhta, Michael Beigl,
and Hans-W. Gellersen. Smart-its friends: A technique for users to easily establish connec-
tions between smart artefacts. Lecture Notes in Computer Science, 2201:116–122, 2001.

4. Tim Finin Harry Chen and Aravind K. Joshi. A context broker for building smart meeting
rooms. In The Knowledge Representation and Ontology for Autonomous Systems Sympo-
sium, AAAI Spring Symposium, March 2004.

5. Vincent Rialle, Nancy Lauvernay, Alain Franco, Jean-Franois Piquard, and Pascal Couturier.
A smart room for hospitalised elderly people: essay of modelling and first steps of an exper-
iment. Technology and Health Care, 5(7):343 – 357, January 1998.

6. Antti Oulasvirta. The fragmentation of attention in mobile interaction, and what to do with
it. interactions, 12:16–18, 2005.

7. Jason Pascoe. The stick-e note architecture: Extending the interface beyond the user. In IUI
’97: Proceedings of the 2nd international conference on Intelligent user interfaces, pages
261–264, New York, NY, USA, 1997. ACM Press.

8. Yasuto Nakanishi, Takayuki Tsuji, Minoru Ohyama, and Katsuya Hakozaki. Context aware
messaging service: A dynamical messaging delivery using location information and schedule
information. Personal Ubiquitous Comput., 4(4):221–224, 2000.

9. Nancy Miller, Glenn Judd, Urs Hengartner, Fabien Gandon, Peter Steenkiste, I-Heng Meng,
Ming-Whei Feng, and Norman Sadeh. Context-aware computing using a shared contextual
information service. In Pervasive’04, “Hot Spots”, Vienna, April 2004.

10. Joyce Ho and Stephen S. Intille. Using context-aware computing to reduce the perceived
burden of interruptions from mobile devices. In CHI ’05: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 909–918, New York, NY, USA, 2005.
ACM Press.

11. Stephen S. Yau, Dazhi Huang, Haishan Gong, and Yisheng Yao. Support for situation aware-
ness in trustworthy ubiquitous computing application software. Software: Practice and Ex-
perience, 36(9):893–921, July 2006.

12. Anind Dey. Understanding and using context. Personal and Ubiquitous Computing, 5(1):4–
7, 2001.

13. Karen Henricksen. A Framework for Context-Aware Pervasive Computing Applications.
PhD thesis, The School of Information Technology and Electrical Engineering, University
of Queensland, September 2003.

14. Graeme Stevenson, Lorcan Coyle, Steve Neely, Simon Dobson, and Paddy Nixon. Construct
— a decentralised context infrastructure for ubiquitous computing environments. In IT&T
Annual Conference, Cork Institute of Technology, Ireland, 2005.

15. Simon Dobson, Lorcan Coyle, and Paddy Nixon. Hybridising events and knowledge as a
basis for building autonomic systems. IEEE TCAAS Letters, 2007. To appear.

16. Juan Ye, Adrian K. Clear, and Simon Dobson. Towards a formal semantics for pervasive
adaptive systems. Computer Journal, 2007. To Appear.

17. Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, Norwell, MA, USA, 1998.

18. Lorcan Coyle, Steve Neely, Paddy Nixon, and Aaron Quigley. Sensor aggregation and inte-
gration in healthcare location based services. In First Workshop on Location Based Services
for Health Care (Locare’06), Nov 28 2006, Innsbruck Austria, 2006.

19. Lorcan Coyle, Steve Neely, Gaëtan Rey, Graeme Stevenson, Mark Sullivan, Simon Dobson,
and Paddy Nixon. Sensor fusion-based middleware for assisted living. In Proc. of 1st Inter-
national Conference On Smart homes & heath Telematics (ICOST’2006) “Smart Homes and
Beyond”, pages 281–288. IOS Press, 2006.

20. Lorcan Coyle, Evelyn Balfe, Graeme Stevenson, Steve Neely, Simon Dobson, Paddy Nixon,
and Barry Smyth. Supplementing case-based recommenders with context data. In 1st Inter-
national Workshop on Case-based Reasoning and Context Awareness at ECCBR, 2006.


