
53 International Journal of ARM, VOL. 8, NO. 2, June 2007

Sensor Fusion-Based Middleware for Smart Homes

Lorcan Coyle, Steve Neely, Graeme Stevenson, Mark Sullivan, Simon Dobson, and Paddy Nixon

Systems Research Group
School of Computer Science & Informatics

UCD Dublin, Ireland
(Tel : +353 1 716 5351 ; Fax : +353 1 269 7262 ; E-mail : lorcan.coyle@ucd.ie)

Abstract Smart homes are sensor-rich
environments that contain dynamic sets of
interacting components. These components often
use competing and closed standards and form a
message-based architecture. This complicates
the development of applications that require
information from disparate sources. It becomes
difficult to add new components or to allow
components from different applications to interact
with each another. In this paper we describe
Construct, a pervasive computing middleware
that is ideally suited for deployment in the smart
home. Construct acts as a sensor fusion layer that
takes output from each smart home component
and makes it available to all applications. This
makes it easy to develop applications that require
access to heterogeneous sources of sensor data,
and to add sensors to existing systems to improve
their performance. This paper demonstrates
two Construct-enabled smart home applications
and shows how access to new sensors leads to
improvements in their performance.

1. INTRODUCTION

Home automation and assistive living are perhaps
the most well-known examples of context-aware
pervasive systems. People expect their living spaces
to be comfortable, and place strong requirements on
the usability, stability and longevity of any technologies
deployed there. For a home to be considered truly
“smart” it must provide support for its inhabitants
in a way that fits seamlessly into their daily lives. It
must respond correctly to the events happening in the

home, and adapt as these events (and the tasks they
relate to) change and evolve over time. It must allow
the various stakeholders inhabitants, carers and
others to exert appropriate degrees of control over
its behaviour, and reconcile any differences. It must
allow new devices and services to be deployed (and
removed) piecemeal without requiring significant
physical, administrative or cognitive effort, ideally
without forcing the inhabitants into unwanted vendor
or technology lock-in.

Whilst a number of domestic automation systems
are available commercially, their use of competing
(and often closed) standards and protocols can impede
the creation of smart homes in which large numbers
of heterogeneous devices can inter-communicate easily.
It is vital that developers can abstract away from the
detailed topography, protocols, data formats and control
of sensors, actuators and other information devices,
and instead focus on the processing of information
from disparate sources. This provides great architectural
flexibility and has the potential to improve responses
to the noisy and uncertain information typically
encountered in sensor-rich environments. A common
approach to addressing such issues is through the use
of middleware.

In this paper we introduce a sensor-fusion-based
middleware for smart homes. The system Construct
treats all devices as either sensors or actuators, allowing
arbitrary home automation equipment to be controlled.
All data are represented uniformly, and their level of
abstraction is raised through the use of knowledge-
based data-fusion techniques [6]. This aids developers
to build smart home applications, providing them
with information that is semantically closer to their
needs than the raw data provided by individual sensors.
Furthermore, Construct makes it easy to integrate
sensors that gather data from other sources of interest,
such as the web. This provides developers with a rich

54Lorcan Coyle et al.: Sensor Fusion-Based Middleware for Smart Homes

body of information with which to better automate the
home. The system is fully decentralised and decoupled
from individual information sources, allowing robust
use of an evolving device population.

Construct collects the inputs from a diverse set of
virtual and physical sensors and fuses them into a
distributed data store. Applications query this data
store directly rather than maintaining point-to-point
connections with sensors. This decoupling of consumers
of data from producers enables application developers
to work with a single data format rather than requiring
them to master a number of proprietary formats.

The remainder of this paper is organised as follows.
Section 2 describes the current state of the art in
middleware for smart homes, Section 3 describes
the Construct middleware infrastructure, and Section
4 describes how sensors interact with Construct.
Section 5 describes two Construct-enabled smart home
applications, and identifies how they can be improved
with access to new sensors. Finally, in Section 6 we
conclude the paper, outline other smart home applications
under development, and describe how the Construct
middleware and further documentation can be freely
obtained.

2. MIDDLEWARE IN SMART
HOMES

As smart homes are populated with increasing
numbers of interacting components, the complexity
of communications and data management rapidly
becomes unmanageable without support from a
mediating infrastructure. In traditional distributed
systems, complexity is managed by building abstraction
layers with common services made available to
developers. Such abstractions are often termed
middleware. Middleware can broadly be defined as
a layer between application and system software,
supporting integration between various products and
platforms, whilst maintaining the integrity of the
overall solution in terms of robustness and reliability.

From a developer’s perspective, middleware can
be used to provide services for configuring new sensors
or devices. When a new device enters a smart home it
needs to negotiate its integration with the environment.

Fundamental questions need to be answered: where
does it sit in the network: is it a peer, a master, or a
slave node? Does it need to be told what to do by some
other sensor? What languages does it speak? How
fast can it emit and/or absorb data? What functions
does it perform?

Decoupling of application and system through
middleware provides a number of distinct advantages:
indirection affords change of the underlying system,
languages and protocols; components can reuse services;
introduction of new devices, modules and other systems
can be transparent; and a uniform view of the world
simplifies the development process. Dealing with
common tasks in the middleware layer removes the
burden from the programmer.

Development of middleware for general distributed
systems has evolved around a number of distinct
paradigms including: object-based, tuple-space,
message- and event-oriented, and peer-to-peer (P2P).
Object-based technologies such as CORBA, COM+
and Java EJB provide a platform on which to build
loosely-coupled distributed object systems, complete
with operations for registering objects, discovering new
services, transaction handling, security and facilitating
object message passing. Message- oriented middleware
(MOM) decouples client-server communications by
encapsulating the interactions between entities in
small asynchronous message passing. These forms of
event-style systems are popular in financial services and
other domains where reliability is paramount.

More recently, P2P systems have emerged as a
substraight for building distributed systems upon.
P2P systems reduce the amount of configuration
required by implementing algorithms that support the
dynamic creation of self-organising overlay mesh
structures in the network. Look-up algorithms have
been shown to scale to a very large collection of nodes
[11] and P2P systems can potentially support wireless
(and other) ad-hoc networks extremely well, whilst
distributing the load and cost of service provision
over the node population. This comes at the cost of
a more complex and computationally expensive
resource location with no guarantees that particular
services be, or remain, available. P2P systems remove
the need for a controlling node that can become a
central point of failure, which improves fault-tolerance.

Technologies and standards focussed specifically
on building automation tend to take a more device-
centric and protocol-based view of the domain.
Protocols such as X10 can be employed to control

55 International Journal of ARM, VOL. 8, NO. 2, June 2007

devices in active environments. X10-enabled devices
generally operate at a very simple level, accepting
commands such as on/off or intensity control. LonWorks
and BACnet are examples of systems designed to
enable the building of control networks. BACnet
was specifically designed in an attempt to create a
standardised model for representing devices and
interactions between them. More recently the oBIX
(Open Building Information Xchange) standard has
emerged, defining standard XML and Web Services
to facilitate exchange of information and services
between intelligent buildings and applications.

ProSyst have developed a platform called mBedded
Server, compliant with the OSGi dynamic services
platform that is fully capable of interconnecting
and controlling smart devices and enabling remote
maintenance. A common abstraction introduces a
unified interface to manage different types of controllable
modules e.g., UNPnP, LonWorks and X10. Using
this, it is possible to automate and execute operations
across a variety of controllable modules.

Despite these efforts, there are an increasing number
of sensor systems and modules becoming available
that adhere to different (or indeed no) standards
but which provide essential information for many
applications. Some sensor vendors have focused on
IP-enabled platforms using WiFi or Bluetooth for
communications. Other systems provide proprietary,
often research-based interfaces: Smart-ITs [2], Wavenis
[1] and i-Bean [10].

In summary, an analysis of traditional middleware
approaches shows that they make assumptions about
processing and communications capabilities that cannot
be made in smart home environments. The average
home user does not want to know or care about how to
install their new telephone it should just work. The
dynamic nature of these environments must be handled
automatically. Sensor systems do not provide an attractive
programming platform for complex interactions. It is
difficult to build decentralised and robust applications
in a way that does not require significant customisation.

As the complexity and size of smart environments
increases user interaction and management requests must
be minimised. The requirement for self-management,
self-description, self-configuration, self-optimisation
and other so called self-* properties points towards
the need for more autonomic approaches to middleware
targeting smart homes. In the following section we
introduce our work on Construct, a knowledge-based
middleware, which addresses these requirements.

In order to contribute data, sensors must first
discover a proximate Construct node. Once a sensor
has established contact, it opens a connection to
that node and sends it data in Resource Descritpion
Framework (RDF) form. The node ensures that these
data are well formed, and checks to see if they refer
to recognised ontologies.

As nodes come online, they automatically discover
other Construct nodes using an implementation of
the zero-conf protocol [8]. Zero-conf is also used by

3. CONSTRUCT

We have designed the Construct infrastructure, to
support the development of distributed knowledge-
driven pervasive systems. Such systems interact
through manipulation of a common data model rather
than through the piecing together of services. Sensor
fusion techniques are used to integrate noisy data
sources in a dynamic and semantically well-founded
manner to provide applications with a uniform view
of information regardless of how it is derived. Based
on the principal of decentralisation, a Construct
network is founded upon a set of federated peers,
called nodes. Each node makes available services
to the providers and consumers of data (collectively
known as entities) within the environment. Construct
provides five core services: Discovery, Management,
Sensing, Actuation, and Distribution.

The Sensing service accepts new data from
entities and passes it to the Management service. The
Management service is then responsible for validating
this data before access to it is available though the
Actuation service. Data are communicated between
nodes using the Distribution service. The result of
these interactions is that entities are always working
with a local view of the global data set. This is
illustrated in Figure 1.

Fig. 1 A representation of our knowledge-driven
architecture. Nodes automatically discover and

connect to exchange data. Entities join the network
and access data through services offered.

56Lorcan Coyle et al.: Sensor Fusion-Based Middleware for Smart Homes

entities to locate instances of Construct. The result
of this is a reference to the Discovery service, which
supplies manifests for each of the local services that
support entity interaction.

One of the core features of a knowledge-driven system
is a shared model for representing and understanding
data. We borrow techniques from the semantic web
community by requiring that all data be marked up
using ontologies. Reasoning over the global data model
is supported through mappings between ontological
descriptors. If application developers use a shared
library of smart home ontologies, interoperability at
the data-level between sensors and applications is
transparent. New ontologies may be used if they
exercise mappings to these ontologies [6].

All data in Construct are modelled using the RDF.
RDF is an open-standard that meets our requirement
of providing a common language with which to
represent information generated within a smart home.
Construct’s Manager service uses the Jena framework
[9] a well established tool from the semantic web
community that provides a rich interface for manipulating
RDF data. The Manager service maintains two models
that contain entity supplied data and its associated
metadata. The Sensor service accepts RDF documents
from data providers, while the Actuator service provides
support for querying data.

Distributed communication requires trade-offs to
be made between reliability, scalability, timeliness,
resource usage and complexity. Within the Distribution
service we manage the movement of data between
devices using a probabilistic routing protocol called
gossiping [7]. Data within pervasive systems are often
frequently repeated (e.g., when the location of a
person is updated or the reading from a temperature
sensor is refreshed). The implication of this is that we
may not always need to guarantee complete reliability
of message delivery to all nodes: state information is
likely to be reaffirmed periodically. These relaxed
reliability constraints allow us to use gossiping as a
mechanism for scalable, resilient communication. We
prevent data saturation by associating each datum
with expiration metadata. This value does not indicate
that the data are no longer valid, merely that they
should no longer be actively gossiped. Providing
efficient access to historical data is one area we have
identified for future work.

The core gossiping protocol is stateless and is
initiated periodically at each node by contacting a Fig. 2 Web scraping using a weather sensor

randomly selected node and exchanging messages
that are missing from each other’s message buffer.
Although smart homes may have a relatively fixed
infrastructure in place that is capable of supporting
centralised data storage, a single point of failure is
undesirable. We are working towards developing
intelligent gossiping algorithms to minimise data
distribution delay whilst retaining the benefits of
decentralised control.

The loose coupling between all components of the
system affords robustness through evolution. Automatic
discovery supports the addition of entities and nodes.
The removal of a data consumer has no impact on the
system in general. The removal of a data provider will
impact anything that uses its data unless an ontologically
equivalent source is present. The effect on an entity
of removing a node may be mitigated by the automatic
discovery and reconnection to another node.

All pervasive systems face issues with trust,
which are perhaps particularly acute for smart home
scenarios. These issues do not revolve around the use
of cryptography or connection security, for which
adequate solutions exist; rather, they concern the
degree to which potentially sensitive information can
be shared within a dynamic population of devices of
unknown provenance. In some senses, trust and security
are the Achilles’ heel of pervasive systems: if a device
can be “installed” simply by bringing it into the
home, little can prevent a malicious visitor snooping
although it would at least require physical presence
to accomplish.

57 International Journal of ARM, VOL. 8, NO. 2, June 2007

4. CONSTRUCT SENSORS

Construct is designed to support an extensible
repository of sensors and their associated ontologies.
We have categorised our sensors into two types:
physical and virtual. Physical sensors directly detect
characteristics of the environment e.g., sensors for
location data obtained from Ubisense, Place Lab,
Bluetooth spotters, RFID, and GPS.

Virtual sensors obtain information from the Internet,
local network or local computer. The use of virtual
sensors broadens the scale of context that is available
to Construct applications. We have developed a number
of sensors for obtaining music listening preferences
(by parsing iTunes music databases), news (from online
RSS feeds), concert timetables, concert tickets, TV
listings, and stock quote information (from web pages).
We have also developed a virtual weather sensor to
illustrate the ease with which Internet data can be
incorporated into a smart home application. This sensor
uses web-scraping techniques [4] to read weather
data that is published online (shown in Figure 2). The
advantage of using virtual sensors rather than physical
sensors in this case is that the task of detecting weather
and predicting forecasts is left to the experts and there
is no need to introduce actual physical sensors into
the home. One disadvantage of this technique is that
sensors are dependant on a connection to the external
source and web-scraping itself is dependant on the
source retaining its publishing format. The web-based
virtual sensors described here use simple web-scraping
but it would equally be possible to take advantage of
other techniques such as web-services where these
are available.

A number of entities have been written in different
languages including Python, Ruby, Java, and C#.
Applications that operate over the data from these
sources employ a variety of output devices such as
web pages, wall-mounted displays and Nabaztags.

5. SMART HOME SCENARIOS

Construct applications can be improved by providing
them with access to a wider range of data through the
addition of new sensors. To demonstrate the benefits
of fusing sensor data in this manner, this section

outlines two application scenarios - an activity alarm
for in-home assistive living, and a smart heating
application that estimates the savings that could be
accrued through use of automated storage heaters.

5.1. Activity Alarms for Assistive Living
With the demographic shift towards aging populations

in many societies, increasing amounts of research in
computer science and engineering is being focused
on developing assistive living applications [3]. In
many cases, elderly or infirm people are well enough
to live in their own homes, but are worried about their
ability to contact their family, doctor, or carers in case
of an emergency. Panic buttons are one common
solution to this problem. However, the assumption is
that the householder is always able to use the button in
an emergency situation, which may not be the case. It
is possible to augment this system by installing activity
sensors in devices that the householder commonly uses,
such as interior doors, kitchen appliances, the television
remote control, or toilet flush. If the householder does
not use any of these devices within a certain time period,
a call is made to their phone to confirm that they
are safe and well. If they do not respond, a further
course of action is taken, such as asking their neighbours
to check in on them. When the householder is not at
home, we can expect the sensors of the house to be
quiet.

While this application is not fool-proof, it has the
advantage that its sensed inputs are well correlated
with healthy behaviour. Another advantage is that
alternative sensors can be added depending on the
householder’s habits. Interactions with other household
devices may be more predictive of healthy activity for
different users, and it might be useful to put additional
activity sensors in those devices, e.g., in radios, house
lights, doors, or floors.

Consider the addition to this scenario of a second
television set in another room. This new device will
influence the behaviour of the householder. It should
automatically become a new physical activity sensor
providing data for the alarm system. As Construct
decouples sources of data from its consumers, it is
trivial to incorporate new sensors in this manner. The
discovery, integration and sensing all occur seamlessly
once the devices are within communication range
of each other (e.g., when the TV is plugged into the
electrical system). Applications automatically take
advantage of the new data without modification.

58Lorcan Coyle et al.: Sensor Fusion-Based Middleware for Smart Homes

5.2 Smart Heating Application

The second demonstrator application is an intelligent
home heating system that uses storage heaters. Storage
heaters use cheap electricity (usually at night-time)
to store heat in ceramic bricks and release it during
the day when electricity is expensive. This approach
is most economical if enough heat is stored each night
to heat the house during the following day. If too little
heat is stored overnight, a thermostat ensures that the
correct temperature is maintained by turning secondary
heaters on. However, this necessitates the consumption
of more expensive electricity. Typically, the user
controls the heating system manually by increasing
the amount of heat stored in cold weather and decreasing
it in warmer weather.

We attempt to improve this heating application using
web-published weather forecasts (using the weather
sensor described in Section 4) to automatically regulate
the amount of heat stored each night. The application
uses the forecast of the following day’s temperature
to predict how much heat must be stored to keep the
home above a desired temperature throughout the
following day. These predictions are then used to adjust
the thermostat to reflect the expected temperature,

Fig. 3 Number of Hours Spent Heat (Overnight) During a Year.

resulting in the storage of an appropriate amount of
heat. Apart from being more economical for the home
owner, the application has the benefit of reducing the
cognitive load on the user, in that they no longer have
to manually set the heating system.

An evaluation was performed to investigate the
potential savings available to a home owner. A model
of a home heating system was constructed using a
simplified version of storage heating models and
controls developed by Wright [12]. This model was
used to determine the quantity of heat that must be
stored to keep the house above a certain temperature
during the following day. A record of daily observed
minimum and maximum temperatures in Armagh, UK
for 2004 was used to generate a realistic temperature
dataset for the evaluation [5].

To simplify the experiment we made the following
two assumptions:

advance knowledge of the temperature for each
day is available,

users will only manually set the amount of heat to
be stored each night at the beginning of the month.

To test the economic value of our system, we

59 International Journal of ARM, VOL. 8, NO. 2, June 2007

developed three strategies that aim to approximate
potential user behaviour:

Worstcase : assumes that the user programs the
heater at the start of the month to store enough heat
every night for the coldest day of that month. In this
way, expensive day-time electricity would never be
required. This strategy is used as a straw-man for
the purposes of the evaluation because it is quite
inefficient.
Conservative : ensures that the heater stores enough
heat each night to protect against the coldest 10% of
the days of the following month.

Median : stores enough heat for the median coldest
day of each month.

Our application uses a strategy (called daily-
optimised) that instructs the heater to store just enough
heat to remaining above the minimum temperature
for the following day. Figure 3 compares the amount of
heat that is stored each night of the year using these
four strategies. The x axis shows the months of the
year, and the y axis shows the number of hours that
the heater is turned on for each night. As expected,
the daily-optimised strategy varies in the amount of
heat stored each night, while the other strategies
plateau for each month. It is this variability that leads
to cost savings. Comparison with the worst-cast
strategy suggests that the conservative strategy stores
24% less heat, the median strategy stores 51% less
heat and the daily optimised strategy stores 47% less
heat. It should be noted that although the median
strategy stores less heat at night, the house requires
additional daytime heating half the days of every
month. This analysis suggests that autonomous daily
correction leads to a more economic heating strategy
while eliminating the need for constant calibration by
the home owner.

While an approach based on our daily-optimised
strategy should ensure that the house temperature does
not drop below comfort levels, further improvements
could be made with access to other types of data. By
taking into account occupancy it should be possible
to provide a more efficient solution. If the home is
expected to be unoccupied, the owner may be solely
concerned about keeping the temperature above
freezing (to prevent water pipes from bursting). Using a
virtual sensor for calendar information, it would be
possible to incorporate occupancy data and alter the
strategy to take into account periods where the house

6. CONCLUSIONS AND ONGOING
WORK

Device management protocols satisfy their role in
the control network space yet do not provide the high
level abstractions or services that ease development.
We have described the case for middleware in smart
homes to provide interoperability, and ease of integration
of new components, sensors, and applications. Existing
middleware solutions are often heavyweight and
provide the wrong abstractions for architecting dynamic
environments.

To address these issues we have developed Construct
a middleware framework for smart homes. Construct
supports application development through manipulation
of a common data model, using sensor fusion techniques
to limit the effect of noisy data. The infrastructure is
fully decentralised to provide scalability, and zero-conf
techniques are used to support automatic configuration
of devices in a smart home.

We described two scenarios that demonstrate the
ease of integrating new components into existing
applications, and demonstrated, with a simple evaluation,
the potential benefits of fusing a simple virtual sensor
into a home heating application. These benefits are
two-fold: the user no longer has to set their thermostats
manually, thus reducing cognitive load; and the improved
system is more economical, as access to contextual
information leads to more efficient heating strategies.

As well as the application scenarios described
in this paper, we are working on a number of other
applications, including a music recommender that
makes recommendations collectively to the current
occupants of a room; a memory aid for Alzheimer’s
sufferers that attempts to assist them in the completion
of complex but routine tasks; and a smart meeting
space that recognises the occurrence of a meeting and
attempts to retrieve the minutes and other relevant
information from the last related meeting.

The first beta-version of Construct was released
under the Limited GNU Public License (LGPL) in late
2006. There is a websitei, a public wiki for developersii,
and a public mailing listiii. Several sensors, demonstrator
applications and ontologies describing context data
were made available as part of this release.

will be unoccupied.

60Lorcan Coyle et al.: Sensor Fusion-Based Middleware for Smart Homes

ACKNOWLEDGEMENTS

This work is partially supported by Science
Foundation Ireland under grant numbers 04/RPI/1544,
“Secure and Predictable Pervasive Computing” and
03/CE2/I303-1, “LERO: the Irish Software Engineering
Research Centre,” and by Enterprise Ireland under
grant number CFTD 2005 INF 217a, “Platform for
User-Centred Design and Evaluation of Context-Aware
Services.”

REFERENCES

[1] Coronis Systems, Wavenis technology http://www.
coronis-systems.com/descriptif.php?id = descr_

tech

[2] The Smart-Its project. http://www.smart-its.org/

[3] J.C. Augusto and C.D. Nugent, editors. Designing
Smart Homes, The Role of Artificial Intelligence,
volume 4008 of LNCS. Springer, 2006.

[4] C. Ball. Screen-scraping with www::mechanize,
2003. Available online at http://www.perl.com/
pub/a/2003/01/22/mechanize.html

[5] C. Butler, A. Garcia-Suarez, A. Coughlin, and
D. Cardwell. Meteorological Data Recorded at
Armagh Observatory : Vol 2 - Daily, Mean Monthly,
Seasonal and Annual, Maximum and Minimum
Temperatures, 1844 2004. Armagh Observatory
Climate Series, 2004.

[6] A.K. Clear, S. Knox, J. Ye, L. Coyle, S. Dobson,
and P. Nixon. Integrating Multiple Contexts and
Ontologies in a Pervasive Computing Framework.
Proc Of Contexts and Ontologies: Theory, Practice
and Applications, pages 20 25, Riva Del Garda,
Italy, 2006.

[7] P.T. Eugster, R. Guerraoui, A.M. Kermarrec,
and L. Massoulieacute. Epidemic Information
Dissemination in Distributed Systems. Computer,
37(5):60 67, 2004.

[8] E. Guttman. Autoconfiguration for IP Networking:
Enabling Local Communication. IEEE Internet
Computing, 5(3):81 86, 2001.

[9] B. McBride. Jena : Implementing the RDF Model
and Syntax Specification. Proc Of the 2nd

International Workshop on the Semantic Web,
Hong Kong, 2001.

[10] S. Rhee, D. Seetharam, S. Liu, N. Wang, and J.
Xiao. i-Beans: An Ultra-low Power Wireless
Sensor Network. In Interactive Poster in the 5th

International Conference on Ubiquitous Computing,
2003.

[11] A. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems. LNCS,
2218:329 350, 2001.

[12] A. J. Wright. Electric Storage Heaters in Buildings
Simulation. In IBPSA, Building Simulation, pages
38 40, August 1997.

i The Construct home page can be found at
http://construct-infrastructure.org/

ii The Construct public Wiki can be found at
http://construct-infrastructure.org/wiki/

iii The Construct announcements mailing list can be found at
http://construct-infrastructure.org/construct-announcements

