
Supplementing Case-based Recommenders with
Context Data!

Lorcan Coyle, Evelyn Balfe, Graeme Stevenson, Steve Neely, Simon Dobson,
Paddy Nixon, and Barry Smyth

Adaptive Information Cluster
School of Computer Science & Informatics

UCD Dublin
Belfield, Dublin 4

Ireland
firstname.secondname@ucd.ie

Abstract. We propose that traditional case-based recommender sys-
tems can be improved by informing them with context data describing
the user’s environment. We outline existing applications with similar ob-
jectives and describe an application of our own — Ticketyboo — which
uses music listening preferences and context information from users’ cal-
endars to recommend tickets for music concerts. This data is gathered
by virtual sensors that monitor each user’s music player and calendar
applications. The novelty of this approach is that context data is pro-
vided to Ticketyboo via a dedicated context infrastructure. This results
in a clear separation between the providers and consumers of context
data. By utilising context data in this way, minimal user input/feedback
is required to guide the system since the need for explicit user feedback
is negated.

1 Introduction

The goal of traditional recommender systems is to help individuals to more effec-
tively identify items of interest from a potentially overwhelming set of choices [1].
As such, these systems aim to provide answers (recommendations) to users in
response to their query/goal. The context that has been used in existing recom-
mender systems has mostly been in the form of user preferences. We propose
a novel application — Ticketyboo — which infers implicit context from virtual
sensors in the pervasive computing domain. These sensors monitor a user’s in-
teraction with their media player and their calendar applications and use the
context inferred from these applications to make concert ticket recommenda-
tions.

Traditional recommenders rely on the user to initiate the recommendation
process by entering a query or expressing a goal, the novelty of Ticketyboo is
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that it infers context from external sources and uses this context information
to automatically generate recommendations for the user without the need for a
goal to be explicitly expressed. This novelty addresses the argument that was
first introduced by Aha et al. [2] where they drew attention to the fact that
users often don’t have a definite problem description nor domain expertise. They
remarked that conversational Case-Based Reasoning (CBR) recommender sys-
tems improved upon traditional CBR recommender systems because the system
interacts with the user in a conversation mode to construct the full problem
specification, rather than the user having to explicitly define it. Thus the user
does not need to have extensive domain expertise in order to receive their rec-
ommendations. Ticketyboo users require no domain expertise and do not have
to express a problem that the system is required to solve. Any knowledge that
Ticketyboo requires in order to make recommendations is inferred implicitly
from two desktop applications, a media player and a calendar (in this instance,
iTunes and iCal).

Ticketyboo receives its context data from a context infrastructure called Con-
struct (described in more detail in Section 3.2). However, Ticketyboo is just one
example of how access to context data via context-infrastructures can provide
advantages to recommender systems. In Section 4.3 we describe how other rec-
ommender systems could be enhanced from access to context data in a similar
way.

The rest of this paper is laid out as follows: Section 2 describes how context
is obtained in the pervasive computing domain and how other types of context
have been applied to existing recommendation systems; Section 3 describes the
Ticketyboo application and shows how context data may be used to improve
recommendations; Section 4 describes an evaluation framework for Ticketyboo,
proposed improvements to the recommendation process, additional context that
could be applied to existing recommender systems and the possibility of us-
ing other, less structured, contexts. Finally, Section 5 concludes the paper and
proposes some further work.

2 Context

Before we continue, we should first clarify what we mean by context. Webster
defines context as “the interrelated conditions in which something exists or oc-
curs”. In the pervasive computing domain Dobson et al. defines it as such: “The
context of a system captures the environment in which it operates, including all
additional or non-functional aspects that, while not being core to the system’s
behaviour, nevertheless affect the way in which that behaviour should be opti-
mised” [3]. This definition also applies to the CBR domain where context data
can be used to optimise recommender systems. In this paper we combine the
two domains of pervasive computing and CBR to implicitly infer context from
pervasive computing sensors and use this context data to optimise the concert
recommendations made to users. In this section we look at context in both the
pervasive computing domain and the CBR domain.



2.1 Context in Pervasive Computing

The concept of context is well understood in the pervasive computing domain.
Initial research was centred on exploiting available location, time, and identity
information, and focused on demonstrating the utility of context awareness as
an application feature. The Active Badge call forwarding system [4] used iden-
tity and location information, collected using an IR-based tags worn by users,
to route telephone calls to the phone closest to the intended recipient. The Cy-
berGuide [5] used a location-aware handheld device and map display to provide
tourists with a computerised tour-guide. Using the handheld, users could find
directions, and get background information on items of interest. CyberGuide
also used the user’s location information and travel history to suggest places to
visit.

Recent work in the pervasive computing domain has focused on developing
infrastructures to support the development of general purpose context-aware
applications. Such infrastructures aim to move as much work as possible of the
work as possible onto network-accessible middleware infrastructures. This makes
it easier to deploy new sensors, devices, and services, and makes it easier to share
sensor and context data - placing the burden of acquisition, processing, and inter-
operability on the infrastructure instead of individual devices and applications.
One such system is Context Fabric [6], a distributed infrastructure that uses
structures called infospaces to collect information on people, places, and things.
Sources of information, such as sensors, can publish their data to infospaces,
allowing interested applications to query for required context on demand [7].
Another example infrastructure is the Aura Contextual Information Service [8],
which aims to provide applications with a single interface for accessing context
information. The Aura CIS assumes that the information that is most relevant
to mobile applications can be provided by supplying information about four
classes of entities. These are: People, Devices, Physical Spaces, and Networks. A
Network class is included to provide communication information to applications
that require it (Nearby location with high bandwidth etc.). Generic physical
objects, such as desks and chairs are treated as dumb devices, and vehicles as
Physical Spaces with no fixed location, in order to keep the number of classes in
the model small. The model also explicitly treats power supplies, such as batter-
ies and wall sockets, as attributes of Devices and Physical Spaces respectively.
Services represent information using this model, and applications are provided
with a database like abstraction of these services, with which they may access
context data of interest.

Over time the scope of context analysis has become much broader and to-
day it encompasses a wide range of context descriptors. These include physical
location of entities (users, devices, etc.), time, identity, current tasks, goals, and
preferences. Ongoing developments are also opening up access to other types
of context information. This includes analysis of a user’s emotional state [9],
chemical sensors for environmental monitoring [10], and detecting body position
using sensor-augmented clothing [11].



2.2 Context in CBR Recommender Systems

The majority of recommender systems require the user to explicitly define their
context by directly interacting with the system. One such example is Entree [12],
a CBR restaurant recommender which uses context that is provided explicitly.
Each time that Entree recommends a restaurant, it allows the user to provide
feedback in the form of a critique or tweak. As such the restaurants that are rec-
ommended to a user are personalised according to the user’s desired preferences
at a given time which they have explicitly expressed.

In a world of lazy users, it is preferable for the system to infer context implic-
itly, I-SPY is one such CBR recommender system. I-SPY (http://ispy.ucd.ie/)
is a collaborative Web search engine that introduces a form of context into Web
search by implicitly determining the context of the user’s search query. Context
information is inferred implicitly from the searching behaviour of communities of
searchers with similar information needs. I-SPY uses the CBR technique of reuse
by exploiting the information in past search sessions to re-rank new result-lists
for users within a community [13].

Although neither Watson [14] nor Letizia [15] are CBR recommender systems,
they both implicitly infer context from user actions to drive their recommenda-
tions. Both recommender systems take advantage of user activity immediately
prior to search in order to determine a suitable search context. Watson identifies
and extracts informative query terms from desktop applications that the user
is currently interacting with, for example Microsoft Word or Internet Explorer.
Watson continually searches the Web for related documents based on their re-
lated query terms. Similarly, Letizia analyses the content of Web pages that the
user is currently browsing and uses similarity term-weighting heuristics to iden-
tify important terms within the document. Letizia then proactively searches out
from the current page for related pages.

Similar to both Watson and Letizia, SmartRadio [16, 17] implicitly infers
context based on the user’s actions. SmartRadio is a hybrid recommender system
that uses CBR and Automated Collaborative Filtering to recommend playlists
of music. The contents of a playlist that the user is currently playing indicates
the user’s current listening preferences. One of the strategies SmartRadio uses
in making recommendations is that it tends to favour playlists that match the
current context, i.e. playlists that are similar to the one that the user is currently
listening to.

Ticketyboo also implicitly infers context from the user in an aim to provide
concert recommendations to the user. The difference between this and other sys-
tems is in the manner in which this context is obtained. Those systems demon-
strate the utility of context data in case-based recommender systems. However,
the providers of context in these applications are part of the recommenders them-
selves. We propose that separation between providers and consumers of context
data is desirable and that by using a dedicated context providing system from
the pervasive computing community, e.g. ContextFabric [8] or Construct [18]
we remove this burden from the recommender system developer. They can then
gain access to all the context data available, make decisions on what contexts are



important and focus on the generation of good domain-knowledge for the CBR
system. If further sources of context data are required, they can create these
without having to worry about the plumbing necessary for integrating these
sources of context data with the CBR application. Ticketyboo gets its context
data from Construct [18], which is described in Section 3.2.

3 Ticketyboo — the Case-based Music Concert
Recommender

The development of Ticketyboo came from a visualisation project where we
sought to display personalised homepages for users about which there was an
abundance of context data. In UCD we have a number of sensors for all kinds
of context data, including location-awareness, news-feeds, weather, music pref-
erences, calendar information and TV information. The personalised context
homepage may be customised by users to display information that is interesting
to them. Ticketyboo was the first recommender system to be integrated with this
webpage; it consists of a frame in the webpage that links to ticket information
for the music artists that a user is listening to. Figure 1 shows a screenshot of
one of the author’s homepage with the Ticketyboo frame magnified. Ticketyboo
runs continuously in the background, examining music listening statistics and
calendar information and uses these to recommend concert tickets based on the
user’s context, i.e. their music tastes and availability. By clicking on any of these
artists, the user is sent to the relevant page on a real ticket website where they
may purchase tickets for an upcoming concert by those artists. These tickets will
only be offered to the user if they are at a convenient time for the user.

Fig. 1. Personalised Web Page Built by the Context-Informed CBR System

Ticketyboo itself is only one part of the solution. Logically, the application is
made up of three components: the sensors that detect context data; the context
architecture that maintains and delivers context; and the recommender system



that uses context data to recommend concert tickets. These components are
described in the following Sections.

3.1 Sensing Context

All context data in Ticketyboo comes from the context infrastructure, which
are provided to it by sensors. These sensors might be physical (e.g. temperature
sensors) or virtual (e.g. a sensor that monitors a web-page). Three sensors are
used to provide the context data that Ticketyboo uses; they are:

– Music Sensors: These monitor music applications (e.g. iTunes) for data that
might describe the user’s attitudes towards an artist, e.g. last time and how
regularly the user played a song from that artist.

– Calendar Sensors: These monitor a list of published iCal and vCal calendars
for data about a user’s location (e.g. city) and availability for a period of
time (e.g. during the next month).

– Online Ticket Sensor: This can be asked for information about an individual
artist’s upcoming concerts and available tickets for a particular location.

These sensors convert the data they want to inject into RDF and insert it directly
into Construct. Construct uses Jena [19], a semantic web framework, to manage
all inserted RDF data. In Section 3.3 we show how Ticketyboo makes a simple
query, for a user’s availability at a date in the future, from Construct that was
ultimately created and inserted by calendar sensors.

3.2 Delivering Context

Until recently, the lack of a generalised approach for dealing with context infor-
mation had resulted in its use within a relatively small number of applications
(e.g. Cyberguide [5]). Early examples of context-aware applications dealt mainly
with context in an ad hoc fashion, and primarily served to demonstrate the
utility of context information, rather than contribute any software engineering
practices to aid its ease of use. Recent work in the field of pervasive computing
has seen the development of infrastructures designed to support the collection,
processing, and distribution of context information [8, 20, 7], and as such, has
lowered the entry barrier for applications that wish to utilise such information.

Our own platform, Construct is a software infrastructure for integrating con-
text information in a semantically well-founded manner. The platform supports
extensive inferencing and sensor fusion [3, 21], which is used to raise the level of
abstraction of available data towards that required by applications. Construct
has a fully decentralised architecture; devices within a smart space each run an
instance. Each instance manages the local data provided by applications and
sensors (physical or logical) connected to that device. All data are modelled us-
ing the Resource Description Framework (RDF), which provides a standardised
way in which to model context information and properties. Collectively, the de-
vices maintain a global model of the data within a smart space. Applications



then work with the local view of the data present on the device on which they
are running using a Query Service.

The Ticketyboo recommender uses Construct’s query service to obtain user
calendar, music preference and upcoming concert information for the generation
of case data. Queries are made for each appropriate piece of context data using
a SPARQL query. Figure 2 shows a simple example SPARQL query that asks
for the availability and location of lorcan on the 5th of September 2006. These
queries retrieve data in RDF form. To generate case data, the Ticketyboo rec-
ommender uses Constructs query service to obtain a user’s calendar and music
preferences as well as upcoming concert information.

SELECT ? a v a i l a b i l i t y , ? l o c a t i o n WHERE
?Agent name ” lo r can ” .
?Agent date ”05/09/2006” .

Fig. 2. An Example SPARQL Query

The output of the recommender acts as a new input to the construct system,
and is then queried for by the presentation medium (in this case, the person-
alised web page). It should be noted that this data is now available as context
information for other applications that use Construct.

3.3 Making Recommendations

MAC/FAC (many are called but few are chosen) is a two stage similarity based
retrieval model which originates from cognitive science [22]. We use MAC/FAC
in Ticketyboo where the first stage represents retrieving information for all users
of the system and the second stage retrieves information at the individual user
level.

Figure 3 shows how the MAC/FAC model is applied to Ticketyboo. The first
stage, MAC, selects a large number of cases from the case-base. Cases — all
information relating to a concert, for example artist, location, date, time, ticket
price etc. — are chosen using the broad context of all music listed by all users
which we obtain from their desktop media players. This music can encompass a
wide variety of artists thus resulting in a large number of cases being selected
for reuse. The second stage, FAC, refines the number of selected cases by taking
into account the more rigorous context relating to individual users. Firstly a
user’s location context is inferred from a desktop calendar and this information
is used to reduce the number of cases from the case-base based on whether or
not the user could attend a particular concert. Secondly the individual user’s
music preferences are inferred from the media player and the cases are further
reduced.

It is computationally inexpensive to extract concert information an online
ticket store, even for a large number of artists. Therefore as a user adds a new



Fig. 3. The MAC/FAC retrieval stages for recommendation



album to their media player, the system can easily scrape the online ticket store
for concert information relating to this new artist and update the case-base
accordingly. As the recommendation process proceeds through the system, the
expense increases. The most computationally expensive task is that of inferring
the user’s exact music preferences by firstly determining the popularity of an
artist by the frequency which its albums/songs were played through the media
player and secondly by examining the implicit ratings assigned to songs by the
user. This multistage retrieval process is preferable because it ensures that the
most expensive task is carried out on the least number of cases.

4 Discussion and Future Work

Due to the early stage that this work is at, there are several points for fu-
ture work. This work has also raised many observations about context in our
minds that should be further discussed. In this Section we describe an evaluation
framework for Ticketyboo; some proposed improvements to the recommendation
process; how context data could be used to improve some existing recommender
systems; and finally the possibility of using further, less structured, context in-
formation for decision support applications.

4.1 Evaluation Framework

We intend to evaluate our approach by comparing context-boosted recommen-
dations with recommendations made without the benefit of context. This will
involve comparing the performance of Ticketyboo with a simple recommender
that doesn’t take into account context data (e.g. data from the calendar sensor).

While an online evaluation of any recommender system is preferable [23], it
is not appropriate to evaluate Ticketyboo in this way. This is because of the fact
that a successful online evaluation is dependant on a mature fully-engineered
system with a large group of regular users. Therefore implicit feedback will be
used to perform our evaluations. When users visit Ticketyboo, they are presented
with a set of recommended tickets for the artists they are interested in. They
can select any of these tickets for purchase, in which case they are forwarded to
the appropriate ticket vendor website. We record user selections and use them
to evaluate our various recommendation techniques offline. This is a best of
both worlds evaluation framework, using online data with offline analyses of
recommender strategies [24].

The recommendation process works by generating recommendation scores for
each of the offered tickets and using these to order the offer-set for presentation.
Our evaluations compare this ordering with the user’s selection of a preferred
ticket and generate a recommendation accuracy (Arec) using this equation:

Arec = 1− index− 1
N − 1

(1)

where index is the position of the selected offer in the ordered offer-set and N
is the size of the offer set. In this way, each session a user has with Ticketyboo



that leads to the purchase of a ticket can be used to generate a recommendation
accuracy score. By averaging recommendation scores, we can compare the utility
of the context-free recommendation strategy with that of the context-informed
recommendation strategy.

4.2 Finding and Learning Context Features for CBR

The domain knowledge required to correctly identify context data to be used
in a CBR system can be expensive. However, this context data should be in-
expensive to acquire, and with the growth of pervasive computing will become
more available. One approach to reducing the work needed to identify suitable
context features might be to amass a dataset of system behaviour in parallel
with whatever context data was available during interactions with the system.
This dataset could then be data-mined to look for correlations between context
data and the accuracy of the CBR process. These context features could then
be added to the case structure.

The relative importance of context features used in a CBR system should
also be investigated. Feature weights could be learned using techniques similar
to those of Stahl and Gabel [25], Branting [26] and Coyle et al. [27]. By examining
context features that are deemed important, it may also be possible to direct
the application designer to investigate other, similar sources of context data.

4.3 Applying Context to Existing Recommender Systems

There are many recommender systems that could benefit from context data sim-
ilar to that which we incorporate. We describe ways that popular recommender
systems might be improved with a little extra context data.

PTV is a personalised TV listings service which recommends TV programs
to users based on their learned viewing preferences [28]. PTV could use calendar
information in a similar manner as in Ticketyboo, whereby recommendations
would not be made if the user’s calendar suggested that they were away or busy.

In Section 2 we introduced Watson, the browsing assistant that uses informa-
tion regarding the users activity on the desktop to infer context and thus assist
the user to browse the Web. If sensors that can monitor desktop search appli-
cations (e.g. Google Desktop or Spotlight) were developed, applications such as
Watson and Letizia could be improved greatly. This is an example of an existing
application being improved with the development of new (or simply improved)
context sensors.

E-commerce websites like Amazon could benefit from using additional con-
text data, e.g. music preferences from customers listening habits into their rec-
ommendations, as a means of improving the relevance of the recommendations
that it makes to its users. In fact Google Ads that are embedded into GMail
do just this, Google analyses the content of user’s email to determine context
and selects the best types of advertisements to present to that user. Obviously,
privacy is an issue in applications where context data might be sensitive and
this issue is currently being addressed in the pervasive community [29].



Entree could be improved by making on-the-go recommendations more rel-
evant. Tweaks that take into account context data, e.g. “show me a restaurant
close to me now”. This is simply a gelling of location data – commonly regarded
as one of the most important components of context data in the pervasive com-
puting domain – with the regular Entree recommender system.

4.4 Using Context for Decision Support

Up to this point we have talked about using context data to improve CBR
in general and case-based recommendation in particular. One point we would
like to emphasise is that with access to the quantity of context data available
when using a context-infrastructure like Construct, it becomes relatively easy to
provide whatever additional data might be useful to the user to make a decision
when selecting an item for purchase (or indeed in any decision-support system).
The difficulty arises in deciding which data to present to a user, and how to
present it.

5 Conclusions

Many CBR and recommender systems have shown how context data can be
useful in improving performance. However to date, this context data has been
limited and sparse. Meanwhile, the pervasive computing community has much
experience in dealing with context data. We propose that CBR systems design-
ers should exploit the context information that is made available by work in the
pervasive computing domain. Context-infrastructures like Construct offer signif-
icant advantages to recommender systems. By providing a middleware capable
of collecting, distributing and making available heterogeneous context data we
allow applications to benefit from the development of new sources of context
data.

An advantage of the approach implemented is that all recommendation data
are re-inserted into Construct, and thus available to other applications. For this
reason, other user-interfaces could easily be developed and the choice of web-
interface was just one of many possible solutions, e.g. a calendar plug-in that
updates your calendar with recommended concert details; or a music plug-in
that presents ticket information for the artist that the user is currently listening
to.
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