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Abstract. As Case-Based Reasoning has matured as a discipline; the need for a 
standard means of representing case-based knowledge has come to the fore. 
While proposals exist for representing the vocabulary and the case-base knowl-
edge containers, there are still no proposed standards for representing similarity 
or adaptation knowledge. In this paper we present extensions for representing 
similarity knowledge to CBML, an XML-based CBR language.  

1 Introduction 

Kitano and Shimazu have proposed that CBR applications have been too narrowly 
focused on domain specific problems [12]. They suggested that a CBR system should 
be viewed as a medium to be used in conjunction with the mainstream corporate in-
formation system. We share this perspective and anticipate that a standard way of 
marking up cases will facilitate this. The standard proposed for marking up structured, 
knowledge-rich data is XML. Our earlier work [3, 9, 10] described an XML-based 
case representation language called CBML (Case-Based Markup Language). Several 
other XML-based CBR systems have appeared over the past few years, e.g. [8, 15]. 
However, as Wilson has pointed out, the benefits that accrue to XML in general will 
not be fully passed on to the CBR community until a standard means of representing 
case data in XML is developed [18]. We propose that CBML has the capabilities to 
become such a standard.  

Richter has identified four different ways in which knowledge can be represented in 
a Case-Based Reasoning (CBR) system [14]. He has named these knowledge contain-
ers and they have met wide acceptance as a natural organisation of knowledge in 
CBR. Richter’s knowledge containers are: 

• The vocabulary used, 
• The similarity measure, 
• The casebase, 
• The solution transformation 
Given the wide acceptance of this organisation of knowledge in CBR, it is perhaps 

surprising that attempts to create a representation language for CBR have concentrated 
for the most part on the vocabulary and casebase containers, e.g. [8, 11]. Our earlier 
work also focused on the vocabulary and casebase containers. This paper describes 
our more recent work on the representation of the similarity measure container. This 



representation is an extension of the CBML standard and allows the CBR developer to 
make the definition of similarity completely independent from the application code. 
Section 2 outlines the requirements for such a representation and describes our ap-
proach. Section 3 describes some advantages that we have observed in the fields of 
personalization, distributed CBR, explanation-based CBR and collaborative CBR.  

2 Representation of Similarity 

This section outlines the representation of similarity in CBML. It begins with a brief 
description of the feature types, documents the requirements for representing the tradi-
tional similarity function, and finishes with a description of how this is achieved in 
CBML. A number of example CBML fragments are used to illustrate the representa-
tion. 

2.1 CBML – Cases and Case Structures 

CBML was originally developed to facilitate distributed CBR and modular CBR ob-
jects. There were two CBR objects in CBML; the case content object and the case 
structure object. The case structure object defines the hierarchy and cardinality of the 
features that can appear in a case. Within the case structure, there are a number of 
feature structures that define the features that can appear in a case. These feature 
structures defines the feature’s type, its value restrictions, and other attributes. The 
following are a list of the possible feature types and the restrictions that can be im-
posed on them: 

• Symbolic – the feature value must be one of an enumerated list of possible val-
ues 

• Numeric – can be integer or double type (ranges can be set)  
• Boolean – the value can be either true or false 
• String – the value can be any string 
• Taxonomy – similar to symbolic type except that the possible values are repre-

sented with a tree structure 
The case content document contains the casebase information in XML format. It 

must conform to the specifications laid out in the case structure document both in 
structure and content to be considered valid. 

2.2 Similarity Measures  

Traditionally, the similarity between a query, Q and a case, C is defined as the sum of 
the similarities of its constituent features multiplied by their relevance weights: 
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Where wf is the feature relevance weight and f is the local similarity measure (i.e. 
feature specific similarity measure). In order to provide a representation of the similar-
ity measure it is therefore necessary to represent both a relevance weight and a de-
scription of the local similarity measure for every feature. Weights are just attributes 
of features but local similarity measures are more complex. We have defined three 
types of local similarity measures: 

• Exact similarity measures - similarity is 1 if the feature values are equal, oth-
erwise it is 0.  

• Difference based similarity measures – Similarity is directly related to the dif-
ference,  between feature values. This measure is only suitable where a differ-
ence can be defined between feature values, e.g. with numeric features the dif-
ference is the mathematical difference. 

• Complex Similarity Measures – Any similarity measure that is different to the 
above representations falls under this category. It is impossible to provide for a 
representation scheme that could cover every possible type of complex similar-
ity measure. However, if the number of possible values is finite, it is possible 
to calculate and store similarity values for every combination of feature value 
in advance. 

In order for a good representation scheme to work we need to define the above 
similarity measures formally. The exact similarity function is trivial; it depends on 
value matching. The complex similarity measure is impossible to define completely 
due to the infinity of possible measures. It is impossible to define a single difference 
function for string types, and trivial to define one for Boolean types so we will confine 
ourselves to the definition of numeric, symbolic and taxonomic differences. 

 
Table 1. Table 1 shows the definitions for the difference functions for numeric 
(integer and double), symbolic and taxonomic feature types. 
Feature Type Difference ( ) definition between Value1 and Value2 
Numeric Value1 – Value2 
Symbolic Relative difference in the positions of Value1 and Value2 in the 

list of possible values. 
Taxonomy Number of branches between the Value1 and Value2’s nodes in 

the taxonomy 

With a definition of difference in place it remains to come up with an adequate 
definition of the relationship between difference and similarity. In the next section we 
show how a graph may be defined relating them. 



2.3 Representation of Similarity in CBML 

All CBML is represented using the XML language. A discussion of CBML case con-
tent and structure definitions is beyond the scope of this paper; it is documented more 
fully on the CBML website1. The CBML Schema is tightly defined by an XML-
Schema document. We have developed a number of parsers that will read valid 
CBML and convert them into Java objects. Only similarity documents that conform to 
the CBML Schema will be considered valid CBML. 
 

<feature name="Gender" weight="0.25"> 
  <exact/> 
</feature> 

Fig. 1. Gender is a symbolic feature used in the breathalyzer domain [4]. This figure shows 
the CBML definition of Gender’s similarity measure. It defines it as having a relevance 
weight of 0.25, and that it uses an exact similarity function.  

The CBML representation of a similarity measure is a composite of feature specific 
similarity definitions. These feature similarity definitions have mandatory attributes 
defining the feature name (name) and relevance weight (weight). The relevance 
weight is simply an attribute called weight that can have any normalized double value. 
The remainder of this section describes each of the similarity types and illustrates each 
one with a CBML example. Fig 1 shows the representation of a feature that uses an 
exact similarity measure.  

Fig 2 shows the representation of a difference function similarity measure. The 
parser looks at the feature type from the case structure to determine which type of 
difference function to use, i.e. numeric, symbolic or taxonomic. The similarity graph 
is defined here too. This graph may be symmetrical (the default) or asymmetrical. A 
symmetrical graph only deals with absolute difference values. By adding more points 
to the graph any piece-wise linear relationship between similarity and difference can 
be represented. 

 

                                                           
1  http://www.cs.tcd.ie/research_groups/mlg/CBML/ 



<feature name="price" weight="0.2"> 
  <graph type="asymmetrical"> 
    <point difference="-Infinity" similarity="1"/> 
    <point difference="0" similarity="1"/> 
    <point difference="200" similarity="0"/> 
  </graph> 
</feature> 
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Fig. 2. Price is a numeric (double) feature used in the Personal Travel Assistant domain 
[1]. This figure shows the CBML definition of Price’s similarity measure. It defines it as 
having a relevance weight of 0.2. It then defines an asymmetrical graph of similarity versus 
difference by defining a number of points. For demonstrative purposes, this graph is also 
plotted. From the graph, the calculated similarity between two prices with a difference of 
100 is 0.5.  

Fig 3 shows the representation of a complex similarity measure. This is used when 
neither of the above representations is appropriate. It is used for similarity measures 
that cannot be represented easily in XML. Our parser uses this attribute to refer to a 
predefined Java class for the similarity measure definition, but other parsers could use 
it to refer to something else, e.g. a MathML [19] document. We have implemented an 
interface that all similarity measures must implement (this contains one function that 
takes in two features and returns the similarity value). This ensures a level of interop-
erability, but since these objects are not as portable as XML documents the use of this 
similarity definition is discouraged.  

<feature name="sepal-length" weight="0.25"> 
  <measure name="iris.similarity.SepalLength"/> 
</feature> 

Fig. 3. Sepal Length is a numeric (double) feature used in Fisher’s iris domain [7]. This 
code is the CBML definition of Sepal Length’s similarity measure. It defines it as having a 
relevance weight of 0.25. It also tells the CBML parser to use the class 
iris.similarity.SepalLength to calculate similarity.  

The array similarity measure is the final way to represent similarity in CBML. It is 
useful for features with a finite number of possible values, but requires the user to pre-
calculate the similarities in advance. If a value cannot be found in the array of similari-



ties the exact similarity measure is used. Fig 4 shows a representation for the array 
similarity measure.  

<feature name="meal" weight="0.05"> 
  <array> 
    <primary name="none"> 
      <secondary name="snack" value="0.8"/> 
      <secondary name="lunch" value="0.4"/> 
    </primary> 
    <primary name="snack"> 
      <secondary name="none" value="0.8"/> 
      <secondary name="lunch" value="0.8"/> 
      <secondary name="full" value="0.4"/> 
    </primary> 
    <primary name="lunch"> 
      <secondary name="none" value="0.4"/> 
      <secondary name="lunch" value="0.8"/> 
      <secondary name="full" value="0.8"/> 
    </primary> 
    <primary name="full"> 
      <secondary name="snack" value="0.4"/> 
      <secondary name="lunch" value="0.8"/> 
    </primary>  
  </array> 
</feature> 
 

 none snack lunch full 
none 1 0.8 0.4 0 
snack 0.8 1 0.8 0.4 
lunch 0.4 0.8 1 0.8 
full 0 0.4 0.8 1  

Fig. 4. Meal is a symbolic feature used in the breathalyzer domain [4]. This code is the 
CBML definition of the similarity measure for Meal. It defines it as having a relevance 
weight of 0.05. It also contains an array of every possible feature value combination with a 
similarity value for each, e.g. the similarity between “none” and “snack” is 0.8. The array as 
defined is also shown.  

3 Applications of CBML Similarity Measures 

We have used CBML similarity measures in a number of research areas in the Ma-
chine Learning Group in Trinity College, most notably in our Personal Travel Assis-
tant (PTA) application [1, 2] and in the explanation domain [4]. We have also devel-
oped a workbench that provides a set of utilities for CBR systems called Fionn2 [5]. 
Fionn uses CBML as its internal representation format. This section describes some of 
                                                           
2  http://www.cs.tcd.ie/research_groups/mlg/Fionn 



the advantages we have observed from using CBML represented similarity measures 
in these applications. 

The Personal Travel Assistant  
The Personal Travel Assistant is an application that assists users in the booking and 
selection of flights. The main task for the PTA is the recommendation of suitable 
flights to the user using CBR. Fig 5 shows a diagram showing the flow of information 
through the PTA. The PTA recommendation engine uses Fionn components to make 
recommendations. The CBR functionality is all implemented as Fionn components, 
and because these components understand CBML we can switch them with ease. 
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Fig. 5. Fig 5 shows a diagram of the architecture of the PTA application. The user makes a 
travel request (1) and this request is forwarded to the Request Satisfaction Module (2). This 
module sends the set of new offers to the Recommendation Engine (3). The recommendation 
engine gets the relevant user profile information from the knowledge base, i.e. the user’s per-
sonal casebase and similarity measure. It then uses the Fionn module to generate a sub-set of 
recommended offers (5, 6) and sends these to the User (7, 8). 

To generate accurate recommendations we need to develop similarity measures that 
reflect the users travel preferences. Part of the personalization process involves updat-
ing these measures based on user feedback (this process is documented in more detail 
in [1]. By using CBML similarity measures we can do this easily and store personal 
similarity measures for each user (in the Personalisation Knowledge-base).  

There are two ways in which we can learn a similarity measure. The first is by alter-
ing feature weights and the second by altering the local similarity measure in the man-
ner proposed by Stahl [17]. By altering the feature weights, we adjust the relative 



importance of features for the user. We have experimented with altering the feature 
weights [1] and achieved positive results. We intend to assess the usefulness of alter-
ing the local measure for certain features in this domain over the coming months. In 
Fig. 2 we described the price similarity measure used in the PTA. By altering the 
position of the third point we can change this user’s sensitivity to a difference in price, 
e.g. by changing the point from {200, 0} to {100, 0} we would focus the price similar-
ity measure on offers with differences of less than 100.  

Each user of the PTA system has a personalized set of similarity measure and case-
base describing their travel preferences. Much work has been done in the area of col-
laborative CBR [13] and we intend to implement some of these techniques to address 
bootstrapping problems and problems with case competence [16] in general. To ad-
dress these we will need to be able to modularize the components we intend to share. 
CBML facilitates this modularization. 

The original motivation for the PTA was as a distributed CBR application along the 
lines of Gardingen & Watson’s HVAC system [8] where the user would access the 
PTA via a fat client browser. One advantage of using CBML similarity measures in 
this context is that the expensive personalization calculations on the similarity meas-
ure could be calculated and stored in a central server and the relatively cheap recom-
mendation process could be done on the client side. With such a distributed CBR 
system we could implement different recommender systems depending on the target 
platform. As long as these heterogeneous CBR systems understand CBML there will 
not be any problems with transferring the CBR objects from server to client.  

Explanation in CBR 
Previous research has shown that case-based explanation is more convincing than 
other types of explanation in classification problems [4]. However it also showed that 
there is scope for improvement in the quality of our explanations. Our current research 
uses a two stage process to generate explanations; the first performs a standard CBR 
classification, and the second uses an explanation function specific to this classifica-
tion to determine the best case for explanation [6]. 

As the structure and requirements for our explanation utility functions are the same 
as those for the similarity measure so it was logical to reuse the definitions and so we 
use CBML similarity measures as the basis for our explanation functions. Due to their 
modularity the domain expert can update the different explanation measures individu-
ally and without needing to write any code. For most features, our explanation func-
tions are closely based on the similarity functions used in the classification task.  

4 Conclusions  

Richter’s knowledge containers have received wide acceptance in the CBR commu-
nity. Our earlier work concentrated on defining a formal representation schema for the 
casebase and vocabulary containers called CBML. This work is concerned with the 
definition of a schema for representing similarity knowledge. This paper outlines the 



requirements for such a schema and describes our implementation. We have incorpo-
rated this schema into CBML.  

Before outlining a representation for similarity measures it is important to first re-
view what is possible to represent. The most common similarity measures are based 
on exact matching or on numeric differences so our focus has been to develop a com-
pact, intuitive way of representing these. We have also catered for more complex 
difference-based measures, i.e. taxonomic and symbolic difference functions. Finally 
we made it possible to define similarity arrays and to refer to user-defined similarity 
measures. Section 2.3 shows examples of representations of each of these similarity 
types. 

Our experiences with CBML in the Machine Learning Group have been positive. 
There are currently six researchers in our group using CBML similarity measures in 
several applications. In Section 3 we outlined some of the advantages we have ob-
served from using CBML similarity measures in personalization, distributed CBR, 
collaborative CBR and explanation-based CBR. 

As the current implementation of CBML can represent three of the four knowledge 
containers, it is clear that our next step should be the creation of a representation for 
the fourth container – the solution transform.  

References 

[1] Coyle, L., Cunningham, P (2004). Improving Recommendation Ranking by Learning Per-
sonal Feature Weights. To appear in the proceedings of the 7th European Conference on 
Case Based Reasoning, ECCBR 2004. 

[2] Coyle, L., Cunningham, P. & Hayes, C. (2002). A Case-Based Personal Travel Assistant for 
Elaborating User Requirements and Assessing Offers. Proceedings of the 6th European Conference, 
ECCBR 2002, Susan Craw, Alun Preece (eds.). LNAI Vol. 2416 pp. 505-518, Springer-Verlag 

[3] Coyle, L., Cunningham, P. & Hayes, C. (2002). Representing Cases for CBR in XML. 
Proceedings of 7th UKCBR Workshop, Peterhouse, Cambridge, UK. 

[4] Cunningham, P., Doyle, D., Loughrey, J., An Evaluation of the Usefulness of Case-Based 
Explanation, 5th International Conference on Case-Based Reasoning. K. D. Ashley & D. G. 
Bridge (Eds.). LNAI 2689, pp122-130, Springer Verlag, 2003. 

[5] Doyle, D., Loughrey, L., Nugent, C., Coyle, L., Cunningham, P., FIONN: A Framework for 
Developing CBR Systems. To appear in Expert Update 2004 

[6] Doyle, D., Cunningham, P, Bridge, D., Rahman, Y. (2004) Explanation Orientated Re-
trieval. To appear in the proceedings of the 7th European Conference on Case Based Reason-
ing, ECCBR 2004. 

[7] Fisher, R. A. (1936). "The Use of Multiple Measurements in Axonomic Problems," Annals 
of Eugenics 7, 179-188. 

[8] Gardigen D., Watson I. (1998). A Web based Case-Based Reasoning System for HVAC 
Sales Support. Proceedings of British Expert Systems conference 1998 

[9] Hayes, C. & Cunningham, P. (1999) Shaping a CBR View with XML. Proceedings of the Third 
International Conference on Case-Based Reasoning, ICCBR’99, Seeon Monastery, Germany. LNCS 
Vol. 1650. Althoff, K.-D., Bergmann, R., Branting, L.K. (Eds.)   Springer-Verlag Berlin/Heidelberg 
1999,  pp.468-481 



[10] Hayes, C., Cunningham, P., & Doyle, M.. Distributed CBR using XML. In Proceedings of the KI-98 
Workshop on Intelligent Systems and Electronic Commerce, number LSA-98-03E. University of 
Kaiserslauten Computer Science Department, 1998 

[11] INRECA consortium (1994). Casuel: A Common Case Representation Language, available at 
http://wwwagr.informatik.uni-kl.de/~bergmann/casuel/CASUEL_toc2.04.fm.html 

[12] Kitano, H. & Shimazu, H. (1996) The Experience Sharing Architecture: A Case Study in 
Corporate-Wide Case-Based Software Quality Control. In Case-Based Reasoning: Experi-
ences, Lessons & Future Directions. Leake, D.B. (Ed.) pp235-268. AAAI Press/ The MIT 
Press Menlo Park, Ca, US 

[13] McGinty, L. & Smyth, B. (2001). Collaborative CBR for Real-World Route Planning. 
Proceedings of the 2001 International Conference on Artificial Intelligence (IC-AI'2001) 
Las Vegas, Nevada 

[14] Richter, M. (1998) Introduction – the basic concepts of CBR. In M. Bartsch-Sporl, H. D. 
B., and Wess, S., eds., Case-Based Reasoning Technology: From Foundations to Applica-
tions, LNAI Vol. 1400, Springer-Verlag 

[15] Shimazu, H. A Textual Case-Based Reasoning System Using XML on the World-Wide 
Web. Proceedings 4th European Workshop, EWCBR-98. Barry Smyth, Pádraig Cunning-
ham (Eds.) LNCS 1488 pp274-285, Springer 1998 

[16] B. Smyth and E. McKenna. Modelling the competence of case-bases. In B. Smyth and P. 
Cunningham, editors, Advances in Case-Based Reasoning:Proceedings of the Fourth Euro-
pean Workshop on Case-Based Reasoning, pages 196--207. Springer-Verlag, Berlin, Ger-
many, Sept. 1998. 

[17] Stahl, A., Gabel, T. (2003). Using Evolution Programs to Learn Local Similarity Meas-
ures. Proceedings of the 5th International Conference on Case-Based Reasoning, ICCBR 
2003, Trondheim, Norway, June 2003. LNCS Vol. 2689, pp 537-551, Springer 2003. 

[18] Wilson, D. (2001) Case-Base Maintenance: The Husbandry of Experience. PhD dissertation, Indiana 
University, 2001 

[19] Mathematical Markup Language (MathML™) 1.01 Specification. Available online at 
http://www.w3.org/TR/REC-MathML/ 

 


