
Improving Recommendation Ranking by Learning
Personal Feature Weights1

Lorcan Coyle and Pádraig Cunningham

Department of Computer Science
Trinity College Dublin

{Lorcan.Coyle, Padraig.Cunningham}@cs.tcd.ie

Abstract. The ranking of offers is an issue in e-commerce that has received a
lot of attention in Case-Based Reasoning research. In the absence of a sales
assistant, it is important to provide a facility that will bring suitable products
and services to the attention of the customer. In this paper we present such a
facility that is part of a Personal Travel Assistant (PTA) for booking flights
online. The PTA returns a large number of offers (24 on average) and it is
important to rank them to bring the most suitable to the fore. This ranking is
done based on similarity to previously accepted offers. It is a characteristic of
this domain that the case-base of accepted offers will be small, so the learning
of appropriate feature weights is a particular challenge. We describe a process
for learning personalised feature weights and present an evaluation that shows
its effectiveness.

1 Introduction

A particular challenge for e-commerce is to provide mechanisms that substitute for the
ways in which the human sales assistant facilitates the sales process. An important
component of this is the ability to identify the customer’s preferences and highlight
products and services that will satisfy the customer’s requirements and preferences.
This is particularly true in the travel domain. A dialog with a good old-fashioned busi-
ness travel agent would contain phrases like; “I presume you will want to go out on
the first flight.”, “You will want to return on the Friday evening.”, “You will not want
a stopover in Heathrow.” Ideally, an online Personal Travel Assistant will learn these
preferences as well.

 In this paper we describe such a system that uses CBR to rank offers returned in
response to a travel request [6]. There are two types of cases in this system; session-
cases and offer-cases. Session-cases represent previous user-interactions or sessions
with the system and offer-cases represent individual travel offers. Session-cases can be
viewed as request-offer pairs; the problem component of the case is made up of a
previous travel request with some additional contextual information; the solution com-
ponent is a reference to the selected offer (which is an offer-case) in response to that

1 The support of the Informatics Research Initiative of Enterprise Ireland and the support of

Science Foundation Ireland under grant No. 02/IN.1/I1111 are gratefully acknowledged.

that request. The idea behind this is that a user’s preferences are encoded implicitly in
the accepted offers to particular requests and that similar requests will lead to similar
selections of offers. So the ranking is a two-stage process. The first stage is to find a
previous session that contains a similar request to the current travel request. This ses-
sion is assumed to be relevant to the user’s current context. In the second stage, the
current offers are ranked based on their similarity to the offer component of the re-
trieved session-case. This session-based recommendation approach is analogous to
that used in Ricci et al.’s DieToRecs system [10]. Both systems rank presented items
based on their similarity to items selected in response to similar queries in the past
(twofold similarity) [11]. However, DieToRecs differs from our system in that it uses
a mixed-initiative approach to elicit user preferences whereas we determine these
preferences implicitly. We incorporate these preferences into the similarity measures
used in the recommendation process. Some users will be very price conscious, others
will be adverse to stopovers or long stopover times, and others will have preferences
on departure times. Rather than ask users to weight the importance of these criteria we
choose to learn this from past behaviour. There are two reasons for this, first, it places
less cognitive load on the user. Second, it avoids the problem of asking users to assign
numeric weights to criteria – a skill at which people are notoriously poor.

We use techniques along the lines of introspective learning as described in the past
by Bonzano et al. [2], Branting [4] and Stahl [13, 14]. Introspective learning refers to
an approach to learning problem solving knowledge by monitoring the run-time pro-
gress of a particular problem solver. The approach used here is failure-driven in the
sense that an attempt is made to improve feature weights only in the case of a recom-
mendation failure. This is done by decreasing the weights of unmatching features and
increasing the weights of matching features. This will tend to push down the recom-
mendation scores of offers that are not being taken up and pull up the scores of ones
that are selected.

Section 2 discusses a number of feature weighting algorithms where user feedback
drives learning. Section 3 describes our Personal Travel Assistant application and how
CBR is used to recommend flights to users. In Section 4 we give a description of our
feature weight learning algorithm. Section 5 presents results that show that weight
learning improves recommendation accuracy. We discuss some future work in Section
6 and draw our conclusions in Section 7.

2 Feature Weighting based on User Feedback

There are a number of systems that use user feedback to assist in problem solving
episodes. Mixed initiative CBR and conversational CBR systems use feedback to
direct a search through a problem space, e.g. [5, 9, 12, 11]. Some learners attempt to
incorporate a level of utility [1] into the similarity measures by looking at case order
feedback [2, 4, 13, 14]. Utility is indicative of adaptability or usefulness to the current
problem. We hope that by incorporating utility into the similarity measure in this way
we will improve and personalise recommendations in our system.

Bonzano’s et al ISAC system uses a form of introspective learning to improve its
retrieval mechanism. Feature weights are updated in order to optimise problem solv-
ing performance. Stahl [13, 14] describes a similarity teacher that has knowledge of
the utility function of what the system is trying to learn. This teacher goes through
every retrieved set of cases and uses its utility function to calculate a similarity error.
By minimising this error on a feature by feature basis, he attempts to learn the best
feature weights for the problem-at-hand. Branting describes a method of learning
feature weights by looking at customer selections from sets of presented items. This
method is called LCW (learning customer weights), and involves boosting the ranking
order of selected items by altering the feature weights. These techniques are broadly
similar; in each of these approaches there is an attempt to learn a utility function by
altering feature weights to improve retrieval accuracy. The learning techniques them-
selves are also similar, using a combination of failure and success-driven approaches.

Our system uses implicit user feedback – the final selection of an item for purchase
by the user – to drive the learning process. It is a failure driven approach; if the system
is making good recommendations there is no attempt to improve the retrieval mecha-
nism. Because we only use the selection of a single item by the user as our retrieval
mechanism we cannot look at the overall case order feedback as Stahl does, instead
we use a technique more closely aligned with Branting’s work. We also examine ideas
from Bonzano’s work with relation to the issue of contextual features. The fundamen-
tal differences between our work and other work in the area are:

• There is no a priori knowledge about the items being recommended (apart
from their expected structure) as the items are being retrieved in real time. All
that is known is that all items will completely satisfy the user’s initial query.

• Each user of the system acts as her own similarity teacher and the learnt feature
weights are stored in her personal profile.

• Learning is attempted on both stages of the recommendation process; session
retrieval and final offer recommendation.

These techniques all concern introspective learning of feature weights, but there are
alternative techniques available which we intend to evaluate with further work, e.g.
feature selection rather than feature weighting. There has also been work done on the
problem of learning local similarity measures – the similarity measure for each indi-
vidual feature – e.g. [15], but in this work we have confined ourselves to the learning
of the feature weights.

3 Recommending Travel Offers

The main purpose of the PTA is to take a user’s request for flights, contract with real
online flights brokers for travel solutions and recommend the best of these to the user.
Since the flights come in from real, external sources, their details cannot be known in
advance. For the purposes of a demonstration, consider the plight of a user making a
request for a holiday trip from Dublin to Rome. On making the request the user is
faced with choosing flights from a set of forty-nine offers (twenty-four outgoing and

twenty-five return flights). The following list of feature value possibilities illustrates
the diversity of the outgoing offers set:

• Two carriers
• Two destination airports (Ciampino and DaVinci)
• Price ranging from !52 to !112
• Departing as early as 06:30 and arriving as late as 23:45
• Single flight trips and two hop trips. Among the multiple-hop set (of which

there are twenty-three in this set) there are the following additional choices:
o Four possible stopover airports
o Stopover times ranging from two hours up to 12:30 hours

The size of this set is not atypical of the scenarios encountered by users of the PTA.
In fact our users have average return-set sizes of more than 24 offers. Some requests
yield much larger sets, e.g. London to Milan - 79 offers; Dublin to London - 73 offers.
With this degree of freedom the idea that a single feature would override all others
and offer the user the ability to manually search the set by sorting by a single feature is
inadequate. This is why a recommender system is needed to reduce the offer set to a
more manageable size. The remainder of this section describes the recommendation
process in the PTA.

The PTA makes recommendations by looking at interactions the user has had with
the system in the past. By using the selections the user made in similar sessions in the
past we hope to make good recommendations in future sessions. To do this we need to
store information about the user’s habits. After every successful user interaction with
the PTA (i.e. after the user has selected a flight and is forwarded on to the booking
page), we record data about the request (e.g. origin, destination, departure date) in the
form of a session-case. We also store a reference to the offer that was selected by the
user. In this way, the request features represent the problem, and the selected offer the
solution of the session-case. We represent offers as cases in the second stage of the
recommendation process (offer-ranking). This allows us to rank the current set of
offers based on their similarity to the offer-case referenced in the retrieved session-
case.

We will illustrate the recommendation process by describing the steps taken in an
example where a user makes a request for a flight from Dublin to Rome. The user logs
into the PTA and submits a form containing details of the origin, destination, dates of
travel and number of tickets required. The PTA decomposes this request into its con-
stituent parts and forwards these on to a number of online travel brokers. It then com-
poses the responses into a number of travel offers. These offers make up the current
offer case-base.

At the same time, the PTA searches the user’s session case-base for the session
with the most similar request to the current one. It then uses the selected offer from
that session to rank the offers in the current offer case-base. In this example, the re-
trieved session contained a request for a trip to Milan made by the user two months
earlier. In that previous session, the user selected a cheap two-hop trip via London
Stansted with a short stopover time. Therefore, the PTA will tend to recommend simi-
lar offers from the current offer case-base, e.g. cheap flights with a short stopover,
preferably in Stansted.

Both stages use CBR and as such are dependant on the definition of good similarity
measures. Traditionally, CBR systems have depended on domain experts to design
similarity measures. However we have implemented a process whereby our users
“teach” the system their personal preferences which are incorporated into both the
session case-base and the similarity measures.

Unless the user constantly selects offers on the basis of a single feature (which we
observe not to be true) it is important to gauge the relative importance of feature simi-
larities in order to offer better recommendations. We describe the relative importance
of features using feature weights in the similarity measure and describe our technique
to learn them in the following section.

In summary, the recommendation process follows two stages:
i. Context-Matching: Finding the session with the most similar request from the

user’s session case-base and retrieving the selected offer from that session
ii. Offer-Ranking: Using that offer to rank the offers in the current session. The

highest ranked offers are then presented to the user

4 Personalising Recommendations – Learning Feature Weights

As mentioned in Section 3, the recommendation process involves two similarity meas-
ures. We begin by describing our algorithm for learning feature weights for the second
stage of recommendation, i.e. offer-ranking. The similarity between a previously se-
lected offer, S and a current offer, C is given by the sum of the similarities of their
constituent features (f) multiplied by their respective weights:

∈

×=
Ff

ffff cswCSSim),(),(σ (1)

Where F is the set of features that can occur in a case. We infer the relative impor-
tance of features by comparing our predicted recommendations with the actual selec-
tions of the users. When we run the recommendation process on a set of offers, we end
up with an ordering across the set. By comparing the eventual selection of a preferred
offer by the user with this ordering we can generate a recommendation error, Erec as
follows:

1:
1

1 >∀
−

−= NN
N

index
Erec

(2)

Where N is the size of the offer set and index is defined as the ranking of the offer
the user selected. However, if the offer is ranked equally with other offers, index is the
lowest ranking of the equals (e.g. if the selected offer is ranked equal third with four
other offers index is six – two higher ranked plus four equal ranked offers). In this
way, a recommendation error of 0 would indicate that the recommender system rec-
ommended the selected offer above all other offers; this is to encourage the PTA to
minimize the number of offers it must present to the user. Sessions with return flights
have two retrieval accuracies, one for the outgoing and one for the return offers. The
overall retrieval error for a user, Euser is the mean of their recommendation errors.

Table 1. Table 1 shows the selected offer from the previous session (S) and two of the offers
from the current offer set (C1 and C2). C1 was recommended above C2 but the user selected
C2. Our algorithm should alter the feature weights so that C2 would be ranked above C1 if the
recommendation process were executed again.

 S C1 C2
Trip Details Dublin->Milan Dublin->Rome Dublin->Rome
Price 50 60 85
Stopover location London Stansted London Stansted London Stansted
Stopover Time 125 minutes 240 minutes 150 minutes
Selected N/A not selected selected

To improve our recommendation accuracy we must alter the feature weights in such
a way as to ensure that the selected case is ranked higher than the other offers. To this
end we calculate the local similarity difference, f for cases ranked lower than index.
The local similarity difference for the feature of a case (ci) is the difference between
its local similarity score and that of the selected case. We then find out which cases
(wlearn(C1) = true) could be ranked lower if we altered the feature weights:

 0 if)(ifilearn CffalseCw ∈∀<=∆= σ

),(),(where ifindexff cscs σσσ −=∆

(3)

(4)

The local similarities and similarity differences for the example in the last section
are shown below in Fig 1. We are now faced the decision of which case to use to drive
learning. We have achieved good results when using the highest ranked learnable case
(i.e. with wlearn(C1) = true) to drive learning. Returning to our example scenario, we
can use offer C1 to improve the ranking of C2 with respect to C1. We use the following
equations to change the weights on price and stopover time:

 0 if /
 0 if

<∆=
>∆×=

fff

fff

incrementww
incrementww

σ
σ

(5)

The increment parameter was set to 1.1 in the results presented here. Weights are
then normalised and the whole process is repeated until the algorithm passes an itera-
tion limit or one of the following stopping criteria is met:

)(
1

indexifalseCiw
index

learn <∀==
==

(6a)

(6b)

Criterion 6a indicates that we have reached the overall optimal solution and that no
further learning is necessary; criterion 6b indicates that no further improvement is
possible. As we iterate through the algorithm we check for an improvement (i.e. a
reduction) in index. If this occurs we save the feature weights as the current best.
When one of the stopping criteria is met, we save the current best weights for that
session (session-weights).

There are two ways we can use these session-weights. The PTA could store a single
set of weights for each user (user-weights) and could incorporate the session-weights

into the user weights after every completed session. Alternatively, it could store a
reference to these session-weights with the session-case in such a way that the ranking
preferences are viewed as part of the context of the session. We have performed ex-
periments that confirm that it is better to store session-weights with each session-case
than to store user-weights for each user (these results are presented in Section 5). This
reflects the fact that people have different ranking and selection criteria under differ-
ent contexts.

S
(selected offer from
previous session)

C1
Sim(C1,S)=2.55

(not selected)

50 8560

125
Minutes

150
Minutes

240
Minutes

London
Stansted

London
Stansted

London
Stansted

Price

Stopover
Location

Stopover
Time

C2
Sim(C2,S)=2.45

(selected)

9.0)60,50(=priceσ

0.1),(=STNSTNSLσ

0=∆ SLσ

15.0=∆ STσ

25.0−=∆ priceσ

65.0)85,50(=priceσ

0.1),(=STNSTNSLσ

65.0)240,125(=STσ 8.0)150,125(=STσ

Fig. 1. This figure shows the local similarity scores for the Dublin to Rome example. Details
are shown for the features price, stopover location and stopover time. In this example the user
selected the second highest recommended feature so index is 2. The similarity differences for
case C1 are shown beneath its feature values, i.e. price=-0.25.

Learning the Request Similarity Measure
We use a different similarity measure for finding the most similar previous request.

We intend to apply the same learning techniques for this similarity measure. However
there is a fundamental difference in how this learning is driven. As we use a failure
driven approach, we can only trigger learning on the request similarity measure when
we are unable to learn an optimal set of feature weights in the offer recommendation
stage, i.e. when we are unable to find a set of feature weights such that index = 1.
When this occurs, we believe that the problem is not with the learning algorithm but

with the most similar request; i.e. that the context of the most similar request was
different from the context of the current request. We search through the user’s ses-
sions to see if there was another session that would have yielded a better recommenda-
tion and attempt to alter the request feature weights to improve the recommendation
score of the selected offer. This mechanism is more computationally expensive than
simply learning feature weights at the offer granularity, and care must be taken to
ensure that a change in the measure does not affect the accuracy of earlier sessions.
We are currently in the process of implementing this algorithm and so have no results
to present at this point.

5 Results

The PTA has been up and running since December 2003, but due to the nature of the
domain, there is a dearth of sessions. This is because the average user will only make
a few requests every year. To overcome this, we created a number of travel scenarios
and asked people to complete them using the system. One such scenario was to make
plans for a holiday to one of a list of destinations for any duration between five days
and fourteen days. These scenarios were chosen to guarantee a large number of possi-
ble solutions with diversity in the offer sets. Each user was given six scenarios to
complete.

The emphasis on this evaluation was to make the data as realistic as possible. With
this in mind, users were given the freedom to choose their own destination and were
allowed to reject a whole set of offers and make a totally new request if they were not
happy with any of the offer set. The key point to note is that selected offers were con-
sidered by the user to be the genuinely preferred offer from the presented set. Many
users had also completed sessions on their own initiative, and purchased real offers.
These “real” sessions are included in our evaluations.

We use an offline-technique to evaluate our approach to feature weight learning.
This involves simulating interactions with the system using the PTA’s history of user-
interactions. In the first evaluation, we go through every session in the history and
calculate a set of session-weights using the techniques outlined in Section 4. We store
these weights with the session-case.

The evaluation proceeds as follows: we use a leave-one-out approach whereby we
remove one session from the user’s session case-base and treat it as a new (unseen)
session. This session contains a travel-request and a set of offers that were viewed by
the user as well as her eventual selection of a preferred offer. We retrieve the most
similar session-case from the user’s session case-base. With the referenced offer-case
and the optimal set of session weights that we learnt for that session we can calculate a
ranking order on the current set of offers. By comparing this ordering with the user’s
actual selection we calculate a recommendation error for that session. We do this for
every case in the user’s session case-base and calculate an average recommendation
error for each user. We plot the recommendation accuracies against a baseline accu-
racy for each user of the system in Fig 2. The baseline is calculated by using the same
techniques as above except that we do not use session weights but weight features

equally in the ranking process. Fig 2 shows that the recommendation process using
learnt session-weights is significantly more accurate than using equal weights for
every feature.

us
er

 1

us
er

 2

us
er

 3

us
er

 4

us
er

 5

us
er

 6

us
er

 7

us
er

 8

us
er

 9

us
er

 1
0

us
er

 1
1

us
er

 1
2

us
er

 1
3

us
er

 1
4

us
er

 1
5

us
er

 1
6

A
ve

ra
ge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Accuracy Accuracy using Session-Weights

Fig. 2. A comparison of the baseline recommendation accuracy against the session-weight
recommendation accuracy for each of the sixteen users. The average accuracies of all users are
shown in the far right column. The improvement in accuracy is statistically significant at the
99.99% confidence level.

Our second evaluation assesses the value of user-weights in the recommendation
process. User-weights are an amalgamation of session-weights and provide a better
level of generalization. The user-weights are the average of each user’s session-
weights as calculated in the previous evaluation. A comparison of the recommendation
accuracies in the previous evaluation (i.e. baseline and session-weight recommenda-
tion accuracies) against user-weights is shown in Fig 3. This shows that session-
weights offer a significant improvement in recommendation accuracy over user-
weights. We see the fact that session-weights are more valuable than user-weights as
proof of over-generalization and a confirmation of our premise that context is an im-
portant element in this domain.

Over-fitting
It is important at this point to mention the problem of over-fitting. Previous research
has shown that feature weighting algorithms tend to over-fit the data [8]. We believe
that over-fitting is unavoidable in this domain due to the lack of data. However, our
leave-one-out evaluation shows that the learned weights are still better that the starting
position of equal weights. As more data is collected, we intend to perform an evalua-

tion of the level of over-fitting that is occurring in our algorithm and to attempt to
minimise it.

us
er

 1

us
er

 2

us
er

 3

us
er

 4

us
er

 5

us
er

 6

us
er

 7

us
er

 8

us
er

 9

us
er

 1
0

us
er

 1
1

us
er

 1
2

us
er

 1
3

us
er

 1
4

us
er

 1
5

us
er

 1
6

A
ve

ra
ge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Accuracy Accuracy using User-Weights Accuracy using Session-Weights

Fig. 3. A comparison of the baseline recommendation accuracy, the session-weight recommen-
dation accuracy and the user-weight recommendation accuracy for each of the sixteen users.
The average accuracies of all users are shown in the far right column. The improvement of
learning session-weights over user-weights is statistically significant at the 99.99% confidence
level.

6 Future Work

We intend to develop our approach to making good recommendations to users of our
PTA system. We are currently implementing the mechanism for learning the request
feature weights and hope to use this to further improve our recommendations. We
intend to implement further techniques including Collaborative CBR and learning the
local similarity measure (in the same manner as work done by Stahl [15]).

Collaborative CBR
Because of the lack of session information, we intend to investigate collaborative
techniques to improve our recommendations. When a user makes a request, and the
retrieved session’s similarity score is below a threshold, we look to the user’s
neighbours for a better match. If a similar request is found from a neighbour’s session

case-base we use their experience to recommend offers from the user’s current ses-
sion. This is especially useful for new users.

The main issue with this approach is the determination of a user’s neighbours. We
intend to do this by comparing the feature weights of each of the users and group users
together by virtue of the similarity between their weights. We will strengthen these
groupings if collaboration leads to good recommendations and vice versa. This solu-
tion is appropriate for users with a rich history and well learned weights; however we
are still faced with the problem of determining neighbours for new users. To solve this
we intend to allow new users access to the collective case-base of the system.

Altering the similarity measure
The focus of this paper has been on the learning of feature weights, but there is also
scope to learn local similarity measures. In fact this is also happening in this evalua-
tion to a small extent. The PTA uses a taxonomy difference function to capture the
relationships between geographical locations (the origin and destination features in the
offer-cases use this representation). However, due to the configuration of this taxon-
omy there will never be diversity in similarity among the set of current offers, since all
airports in a city are at the same level in the taxonomy. To allow us to perform learn-
ing at this level, we reorder the taxonomy by boosting the selected feature value above
its siblings, thus incorporating a measure of utility into the local similarity function.

This is only one example of how local similarity functions can be altered to incor-
porate utility; another way is to alter the sensitivity to difference. Many of the features
in this domain use numeric difference as the basis for similarity calculations, by alter-
ing the user’s sensitivity to difference we can implement further personalisation. The
similarity graph for the price feature is shown in Fig 4; by changing point {200, 0} to
{100, 0} we would focus the price similarity measure on cases with differences of less
than !100. A more in depth description of our representation of similarity measures is
given in [7].

7 Conclusions

This paper described our approach to learning personalized feature weights in an
online travel recommendation system. The key motivation in developing a good re-
commender system is to combine good recommendations with a low cognitive load on
the user. We have achieved good recommendation results by implementing personal-
ised profiles, with learning algorithms specific to each user. We minimise cognitive
load by using implicit feedback to drive this learning. Our recommendation process is
based on Case-Based Reasoning, and we learn a user’s profile in two ways; by adding
cases to their case-base with every interaction, and by learning optimal sets of feature
weights for each interaction.

0

0.25

0.5

0.75

1

-200 -100 0 100 200 300
Difference (q-c)

S
im

ila
ri

ty

Fig. 4. Fig 4 shows the relationship between a difference in price between S and C. A differ-
ence of greater than !200 results in a similarity of zero.

Our motivation for learning in this way is that users enter each interaction with a
different context. In the offer recommendation process, the defining context is the
request itself, it is clear that a user’s preferences with respect to a long haul flight will
be quite different than for a short trip, e.g. price may become less important, and com-
fort may be the defining feature. It is these preferences that we are trying to learn. We
have performed evaluations of our techniques with real users of the system that show a
highly significant improvement in recommendation accuracy with our learning algo-
rithms.

One interpretation of our techniques is that they are geared towards reducing the re-
turn set size in response to a request. If we present a subset of the total number of
offers we cannot offer a guarantee that our system will present the most suitable offer
in the first retrieval. For this reason we see the potential for our techniques to operate
in parallel with other recommendation strategies such as comparison-based recom-
mendation [9] and diversity boosting [3] in a mature recommendation system.

References

1. Bergmann, R., Richter, M. M., Schmitt, S., Stahl, A., Vollrath, I. (2001). Utility-Oriented
Matching: A New Research Direction for Case-Based Reasoning. Proceedings of the 9th
German Workshop on Case-Based Reasoning, GWCBR'01, Baden-Baden, Germany. In:
H.-P. Schnurr, S. Staab, R. Studer, G. Stumme, Y. Sure (Hrsg.): Professionelles
Wissensmanagement. Shaker Verlag. pp. 264-274.

2. Bonzano, A., Cunningham, P., Smyth, B. (1997) Using introspective learning to improve
retrieval in CBR: A case study in air traffic control. Proceedings of the 2nd International
Conference on Case Based Reasoning (ICCBR-97), David B. Leake, Enric Plaza (Eds.),
LNCS 1266 Springer pp 291-302 1997.

3. Bradley K. & Smyth B. (2001). Improving Recommendation Diversity. Proceedings of the
Twelfth Irish Conference on Artificial Intelligence and Cognitive Science, D. O’Connor
(ed.) pp85-94, 2001.

4. Branting, L. K. (2003). Learning Feature Weights from Customer Return-Set Selections.
The Journal of Knowledge and Information Systems (KAIS) 6(2) March (2004)

5. Burke, R., Hammond, K., & Young, B. (1997). The FindMe Approach to Assisted Brows-
ing. IEEE Expert, 12(4), pages 32-40, 1997.

6. Coyle, L., Cunningham, P. & Hayes, C. A Case-Based Personal Travel Assistant for Elabo-
rating User Requirements and Assessing Offers. Proceedings of the 6th European Confer-
ence, ECCBR 2002, Susan Craw, Alun Preece (eds.). LNAI Vol. 2416 pp. 505-518,
Springer-Verlag 2002.

7. Coyle, L., Doyle, D., & Cunningham, P. (2004) Representing Similarity for CBR in XML.
To appear in the proceedings of the 7th European Conference on Case Based Reasoning,
ECCBR 2004.

8. Kohavi, R., Langley, P., Yun, Y., The Utility of Feature Weighting in Nearest-Neighbor
Algorithms. , 9th European Conference on Machine Learning ECML-97, Prague, Czech
Republic. Poster session.

9. McGinty, L., & Smyth, B. (2002). Comparison-Based Recommendation. Proceedings of
the 6th European Conference, ECCBR 2002, Susan Craw, Alun Preece (eds.). LNAI Vol.
2416, pp 575-589, Springer-Verlag, 2002.

10. Ricci, F., Mirzadeh, N. & Venturini, A. (2002). ITR: a case-based travel advisory system.
Proceedings of the 6th European Conference, ECCBR 2002, Susan Craw, Alun Preece
(Eds.). LNAI Vol. 2416, pp 613-627, Springer-Verlag, 2002.

11. Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D. & Nones, M. (2003). Produce
Recommendation with Iteractive Query Management and Twofold Similarity. Proceedings
of the 5th International Conference on Case-Based Reasoning, ICCBR 2003, Kevin D.
Ashley, Derek G. Bridge (Eds.). LNCS Vol. 2689, pp479-493 Springer 2003.

12. Shimazu, H. (2001). ExpertClerk: Navigating Shoppers' Buying Process with the Combi-
nation of Asking and Proposing. Proceedings of the 17th International Joint Conference on
Artificial Intelligence, IJCAI-01, Seattle, Washington, USA.

13. Stahl, A. (2001). Learning Feature Weights from Case Order Feedback. Proceedings of the
4th International Conference on Case-Based Reasoning, ICCBR 2001, David W. Aha, Ian
Watson (Eds.). LNCS Vol. 2080 pp502-516 Springer 2001

14. Stahl, A. (2002). Defining similarity measures: Top-Down vs. bottom-up. Proceedings of
the 6th European Conference, ECCBR 2002, Susan Craw, Alun Preece (Eds.). LNAI Vol.
2416, pp 406-420, Springer-Verlag, 2002.

15. Stahl, A., Gabel, T. (2003). Using Evolution Programs to Learn Local Similarity Measures.
Proceedings of the 5th International Conference on Case-Based Reasoning, ICCBR 2003,
Kevin D. Ashley, Derek G. Bridge (Eds.). LNCS Vol. 2689, pp 537-551, Springer 2003.

